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Abstract

Current technologies in Information Retrieval, InfornmatiExtraction, Text
Categorization, Automatic Summarization, etc. are altejguperficial. They
treat orthographic units as words without regard to impurtanguistic phe-
nomena such as phrase, idiom or compound. Tokenizatiorsegaences of
characters separated by spaces does not always give ussticgily mean-
ingful units. More importantly, most current systems use db callecbag of
wordsmodel where texts are represented as (unordered) sets déwaith-
out regard to word orderForm follows functionand the syntactic structure
of a sentence has an important role in determining the mgaofia sentence.
Substantial improvements in text processing systems cathieved only if
we include in depth analysis, at least at the level of syritdms paper is about
our efforts in building wide coverage, robust syntacticgiag systems.

Recently, there is an increasing interest in integratirlg based methods
with statistical techniques for developing robust, wideerage, high perfor-
mance parsing systems. In this paper, we have proposed adoéigy for
building wide coverage shallow parsers by a judicious comatidn of linguis-
tic and statistical techniques without need for large amofitraining corpus
to start with. We propose an architecture, called UCSG SWaRarsing Ar-
chitecture. In the UCSG architecture, a Finite State Granmimdesigned to
acceptall valid word groups and a separate statistical componendeat
in HMMs (Hidden Markov Model), has been used to rate and raekword
groups so produced. We then use a best first search stratpggdoce parse
outputs in best first order, without compromising on theigbilo produce
all possible parses. We have proposed a bootstrappinggyréar improving
HMM parameters as well as the performance of the parser. €Tidess have
been demonstrated by building a wide coverage partial pgusistem for En-
glish.

Key Words:- Chunking, Shallow Parsing, Finite State Grammar, HMM,
Best First Search, UCSG Architecture



1 Introduction

Although a lot of work has gone into developing full syntagiarsers, high perfor-
mance, wide coverage syntactic parsing has remained autliffltallenge [1, 2]. In
recent times, there has been an increasing interest in vaikrage and robust but
partial or shallow parsing systems. Shallow parsing is &s& bf recovering only
a limited amount of syntactic information from natural lalage sentences. Often
shallow parsing is restricted to finding phrases in sentgrnoevhich case it is also
called chunking. Steve Abney[3], has described chunkinfinaisng syntactically
related non-overlapping groups of wordgh CoNLL chunking task[4], chunking
was defined athe task of dividing a text into syntactically non-overlagpphrases
The termphrasehas come to acquire a very special technical connotationguis-
tics and in order to avoid confusion, chunks are also refetweasword groups

As an example, the sentence “He reckons the current accefiait avill narrow
to only # 1.8 billion in September” could be analyzed as fodyy a chunker [4]:

[NP He ] [VP reckons ] [NP the current account deficit ] [VP witrrow ] [PP
to ] [NP only # 1.8 billion ] [PP in ] [NP September ].

Note that prepositional phrases have not yet been buila|¢ete resolving am-
biguities in prepositional phrase attachment. Nor havehienatic roles been as-
signed to the chunks. Partial parsing systems do a bit mare ¢hunking while
still not promising complete syntactic analysis.

Developing computational grammars is a challenging taskn & we restrict to
partial parsing. There are broadly two approaches for teldpment of grammars
- the linguistic approach which depends upon hand-crafiesby and, the machine
learning approach where grammars are learned automgticaih a parsed training
corpus. Developing hand-crafted grammar rules is a very,skxlious and difficult
task, requiring substantial knowledge and skill on the phithe linguist. Automatic
learning of grammars requires, on the other hand, a largeeprdsentative parsed
training corpus, which is rarely available. Perhaps onlypadjcombination of lin-
guistic and statistical approaches can give us the bedtsegth minimal effort.

In this paper, we propose an architecture for shallow pgrsivhich we call
UCSG Shallow Parsing Architecture. In the UCSG Shallow iRgrarchitecture, a
Finite State Grammar is designed to accaptwalid word groups but not necessar-
ily the only those word groups that are appropriate in context for a gserience.
Many additional word groups may also be recognized due tizdéambiguities.
The focus in this phase is only on completeness. There isandanodule consist-



ing of a set of Hidden Markov Models, which will rate and ratile tword groups
so produced. Note that we are not pruning, we are only ratggranking the word
groups produced. Then we use a best first search module toge@a@rse outputs in
best first order, without compromising on the ability to puod all possible parses.
The aim is to produce all possible parses but hopefully inkibst first order. A
wide coverage patrtial parsing system for English has be@teimented and tested
on large scale data. The system has been implemented inrieen Linux. All the
experiments have been carried out on a system having Pehigpmocessor and 1
GB ram.

2 A brief survey of shallow parsing systems

Steve Abney [5] proposed finite state cascade models fohineking task. Grefen-
stette [6] proposed methods to use finite state transdumepaitial parsing. Parsing
with finite state transducers [7] was very popular in theyeaihety’s. Marc Vilain
et al. [8] used rule based sequence processors for the cigutdsk. Herve Dejean
[9] used ALLIS (Architecture for Learning Linguistic Strtuae), which is a sym-
bolic machine learning system for the chunking task.

Miles Osborne [10] proposed maximum entropy based POS téggae chunk-
ing task. Veenstra and Bosch [11] used memory based leaimirpunking. Zhou
et al. [12] proposed error driven HMM based chunk tagger withtext depen-
dent lexicon. Rob Koeling [13] applied maximum entropy mieder chunking.
Christer Johansson [14] proposed context sensitive manxiiikelihood approach
for chunking task. Tong Zhang et al. [15] proposed genezdliminnow algorithm
for text chunking. Recently Fei Sha and Pereira [16] usedlitmmal random fields
for noun phrase chunking and achieved good performance.

Molina and Pla [17] proposed shallow parsing with specililMMs. Carreras
et al. [18] used perceptrons for chunking task. Recently)dyeet al. [19] proposed
a shallow parser based on closed-class words to captutens@ biomedical text.

Taku Kudoh et al. [20] proposed SVMs for chunking. This sysfeerformed
the best in CoNLL-2000 chunking task and achieved an F-nmeas193.48%. Van
Halteren [21] proposed Weighted probability distributiating algorithm (WPDV)
for chunking task. Tjong Kim Sang [22] proposed combinatbseveral memory
based learning systems for chunking task.

Most of the parsers described in literature have used edthigrrule based tech-



niques or only machine learning techniques. Hand-craftulgs in the linguistic
approach can be very laborious and time consuming. Paeseddd produce a large
number of possible parse outputs and in the absence of kurtng and ranking
mechanisms, selecting the right parse can be very diffi@t#tistical learning sys-
tems, on the other hand, require large and representatigseghaorpora for training.

Recently, there is an increasing interest in integratiradletv parsers with deep
parsing. Berthold Crysmann et al. [23] reported an implet@ersystem called
WHITEBOARD which integrates different shallow componentth a HPSG based
deep parsing system. Ronald M. Kaplan et. al. proposed adeimhitecture called
XLE [24] for combining finite state machines with LFG grammiar XLE system,
first the surface forms are run through the FST morphologyrtalpce the corre-
sponding stems and tags. Stems and tags each have entries lifFG lexicon.
Sub-lexical phrase structure rules produce syntactic siodeering these stems and
tags and standard grammar rules then build larger phrases.

Literature survey and detailed analyses show that:

e Even shallow or partial parsing of natural languages isagehiallenging.

e Testing and evaluation of shallow parsers has been cartiedrdy on lim-
ited amount of data (say, 2000 sentences from WSJ corpuspst cases.
Performance on large scale real life data is not clear.

e Testing and evaluation of parsers is a difficult task. Pgrgincuracy of
trained parsers is known to depend significantly on stylisimilarities be-
tween training corpus and test data. For example, Chris Kisiypdink parser
[25] was trained on Wall Street Journal portion of the PereeTBank (PTB)
and when it was tested on Penn Treebank and Susanne corpreswihs a
significant variation in parser performance. Daniel Gil{l2#] studied varia-
tion of parser performance on different corpora and obgktlve same effect.

e Some of the most accurate parsers namely Collins and Clkgpaigers use
lexical co-occurrence statistics in the parsing model. iBla@ildea [26], in
his paper quoted that “lexical co-occurrence probabdiseem to be of no
benefit when attempting to generalize to a new corpus”.

e High performance has been achieved only under restrictadittons. For
example, in CoNLL 2000 chunking task[4] prepositions weo fally dis-
ambiguated, prepositional phrases not built and no attengate to resolve
ambiguities relating to attachment of prepositional pbsas



In the literature, mostly, the performance of the shallowspes is measured
in terms of individual chunk types produced rather than tbeect chunk
sequence or parse for a whole sentence.

e A parser also needs to have good generalization capacintii@er domains.
Current systems have not been shown to be good at this.

e Most systems have used either a linguistic approach or a imadarning
approach. There is a lot of scope for exploring combinatmfrigguistic and
machine learning approaches in syntactic parsing.

e Given the richness of syntactic structure, large amountsghf quality parsed
corpora are required for statistical approaches. The &ryaining corpora
available for English are hardly a few hundred thousandeser@s. In many
languages of the world, hardly any parsed corpora are dlailaFurther,
training corpora must be suitable for a given grammar or gnamformalism.
There are strong corpus effects.

e While labelled training data is difficult to build, large $eainlabelled train-
ing data (that is, plain or POS tagged text corpus) is reaigilable or can
be easily developed. The challenge is to exploit this foretlgyng wide
coverage grammars and parsing systems.

e While several grammars and parsing systems exist for Bmghsl other ma-
jor languages of the world, Indian languages are laggindgp&mind. There
are hardly any substantial computational grammars for dnlyeoindian lan-
guages. Parsed corpora are also not available and hencenmaearning
approaches cannot be applied right away.

3 UCSG Shallow Parsing Architecture

UCSG shallow parsing architecture is set within the UCSGgdatsing framework

that was initiated in the early 1990’s at University of Hyalead by Kavi Narayana
Murthy[27]. See figure 1 for UCSG full parsing framework. Téare three mod-
ules in this architecture.
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Figure 1: UCSG Full Parsing Framework

The L-module takes a sentence as input and identifies allljesgord groups
(chunks) in a single linear scan of the sentence using a &tate grammar in linear
time. For further work, we only look at the chunks, not theiundual words. The
H-module uses a small number of context free grammar rulescimgnize clauses,
identify inter-relationships between clauses and to soxrten¢ determine clause
boundaries. This is done by recognizing that every clauseaheerb group and
clause types and clause boundaries are marked by certakeraaalled sentinels.
UCSG shows that a small number of simple and universal rukesuwficient. Para-
metric variations of the same grammar rules apply for ddfg¢rlanguages. Hav-
ing recognized the hierarchical structure of clauses inmtesee, UCSG proposes
a 'work from whole to part’ strategy to analyze the functibs@ucture in the last
module named the F-module. This particular way of moduddian has been shown
to be universal and computationally simple and efficient ai.wsSee [27] for ore
details.

In this paper, the focus is only on chunking - identifying nks or word groups,
handling ambiguities, and producing parses (chunk se@s3icr given sentences.
This can be extended to include thematic role assignmentlande structure anal-
ysis leading towards a full parser.



Purely linguistic approaches have not proved practicaiedéveloping wide
coverage grammars and purely statistical or machine legrapproaches are also
impracticable in most cases due to the non-availabilitagjé enough parsed train-
ing corpora. Only a judicious combination of the two applaeccan perhaps led to
wide coverage grammars and robust parsing systems. UCS3IGvgiparsing archi-
tecture proposes one such solution [28]. Figure 2 showsdbe W CSG Shallow
Parsing Architecture.
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Figure 2: UCSG Shallow Parsing Architecture

The input to the parsing system is one sentence, either plalPOS tagged.
Output is an ordered set of parses. The aim is to produce aHiple parses in
ranked order hoping to get the best parse to the top. In thik, ey parse we mean
a sequence of chunks. Chunks are sequences of words.

A chunk or a “word group” as we prefer to call it in UCSG, is “awsttural unit,
a non-overlapping and non-recursive sequence of wordscémeas a whole, play a



role in some predication [27]". Note that word groups do mafude clauses (rela-
tive clauses, for example) or whole sentences. Every wardmhas a head which
defines the type of the group. Word groups can be classified/grb groups, noun
groups, adjective groups and so on based on the essencenoédimeng as indicated
by theheadof the word group. Thus word groups are similarctounks[29, 30].
Our word groups are also very similar to tparasesdefined in the work of Beata
Megyesi [31]. It may be noted that the termsunkand phrasehave been used
in substantially different connotations elsewhere irréitare. The word groups we
produce in UCSG are hopefully closer to ideal, semanticaignted units of full
parsing, as can be seen from the examples given at the end.

In our UCSG syntax, the definition of a chunk is motivated bggiion-answering
perspective. Consider

Sentence: | am studying at University of Hyder abad.

UCSG outputs the following word groups

<ng>[ <PNN><i >] </ ng>

<vg>[ <VBB><ane <VWWG><st udyi ng>] </ vg>

<ng>[ <PRP><at > <NN1><uni versi ty> <PRF><of >
<NPO><hyder abad>] </ ng>

The word groups produced can thus be viewed in terms of asstwdrasic ques-
tions such as who, whom, where, when etc. For example, if whuaaquestion
“where are you studying”, the answer is “at University of lydbad”. Observe
that many chunking systems in the world today treat prefpostas chunks in their
own right. Some chunkers break ‘University of Hyderabadbitwo chunks. See
examples below:

Memory based shallow parser [32, 33] gives the followingooitrt

[NP I/PRP NP] [VP am VBP studyi ng/ VBG VP]
{PNP [Prep at/IN Prep] [ NP University/NNP NP] PNP}

[Prep of /I N Prep] Hyderabad//VBD . /.

Note that the word Hyderabad is not part of any chunk.

CCG shallow parser [34] gives the following chunks:



[NP 1] [VP am studying] [PP at] [PP of] [NP Hyderabad]

The word “University” is missing altogether.

Thus our word groups are a bit more semantically orientedaansluch, more
suitable for deep parsing as also for various NLP applicatioWe have set for
ourselves a more challenging task and our results must beedi&eeping this in
mind.

3.1 Finite State Grammar-Par ser

Only linear order, repetition and optional items are reté\far recognizing chunks
- there are no nested or recursive structures to considaeiteFState grammars ef-
ficiently capture linear precedence, repetition and opti@tcurrence of words in
word groups but not arbitrarily deep hierarchical nestinggeneral dependencies
across constituents. Finite state machines are both resgesmsd sufficient for rec-
ognizing word groups [27]. It is also well known that finiteat machines are com-
putationally efficient - linear time algorithms exist forcagnizing word groups.
Finite state grammars are also conceptually simple and teadgvelop and test.
It may be repeated that detailed analysis of the internatsire of word groups
(modifier-modified relationships, for example) is beyond #tope of the current
system.

The Finite State module accepts a sentence (either alréa8ytdyged or tagged
with all possible categories using the dictionary) and pics$ an unordered set of
possible chunks taking into account all lexical ambigsitie

During linear structure analysis all potential groups inveeg sentence are to be
recognized. Linear structure analysis takes care of I&zicgiguities and groups
may overlap one another. The following algorithm identifedls potential word
groups in a given sentence in a single left-to-right scans algorithm works for
both deterministic and nondeterministic state transitl@grams. It simulates par-
allel processing. Instead of maintaining a single curreatesit maintains a cur-
rentstateset. Each word in the input sentence is considered only ondeaa
amount of time bounded by the size of the grammar is spent pat.vwHence the
algorithm is linear in time complexity.



Pseudo Codefor Linear Structure Analysis:

MAIN()
initial _stateset ;=[]
for each of the initial states; in the network do
initial _stateset := union([(s;," ")],initial _stateset)
currentstateset := initial_stateset
step through the words in the given sentence and for each word
advance(currenstateset,w)

ADVANCE ((currentstateset,w)
newstateset ;=[]
for each state (s,str) in currergtateset do
for each out going arc a do
if any of the categories of w matches the arc a

begin
newstateset := union( [(endstate(a),concat(str,w))]
,newstateset)
if terminal state(endstate(a)) then
begin
output(concat(str,w))
newstateset := union(newstateset,initial stateset)
end
end

currentstateset := newstateset

3.2 HMMsfor Rating and Ranking Chunks

The second module is a set of Hidden Markov Models (HMMs) dsechting and
ranking the word groups produced by the Finite State Gramriie hope is to
get the best chunks near the top. This way, although we areestiicting chunk
generation tanly the appropriate chunks in context, we can hope to get thé righ
chunks near the top and push down others.

Words are observation symbols and POS tags are states invisHFormally,
a HMM model\ = (7, A, B) for a given chunk type can be described as follows:

Number of States (N) = number of relevant Categories



Number of Observation Symbols (M) = number of Words of refgév@ategories in
the language

The initial state probability

T = P{Q1 = Z} (1)

wherel <i < N, ¢, is a category (state) starting a particular word group type.

State transition probability

a;; = P{qis1 = jlg = i} (2)

wherel < i,5 < N andq denotes the category at time t agd; denotes the
category at time t+1.

Observation or emission probability
bj(k) = P{o; = vi|g: = j} 3)

wherel < j < N, 1 < k < M andv;, denotes thé*" word, andg, the current state.

While building HMMs, a manually checked and certified chuhkerpus can
be used if available. In this case, HMM parameters can benattd right away.
However, such labelled training data is rarely availabléhéWwno parsed corpus is
available, we can rely on a POS-tagged corpus. In the ladis®, @ bootstrapping
strategy is proposed to refine the HMM parameters later. §aeef3. We first pass
a large POS tagged corpus through the Finite State modulelatath all possible
chunks. Taking these chunks to be equiprobable, we estiimatéMM parameters
by taking the ratios of frequency counts. One HMM is devetbfue each major
category of chunks, say, one for noun-groups, one for veolygs, and so on. The
B matrix values are estimated from a dictionary that inchiftequency counts for
each word in every possible category.

We simply estimate the probability of each chunk using thiewang equation

P(O,Q|\) = 7Tq1bm(01>aq1,q2bqg (02)aq27q3 T a/‘Itfly‘Itth(Ot) (4)

whereq; ,q2, - - -, q; IS @ State sequencs,, 0»,- - -, 0; IS @an observation sequence.
Note that no Viterbi search involved here and the state semgus also known. Thus
even Forward/Backward algorithm is not required and ratinegchunks is therefore
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computationally efficient.

The aim here is to assign the highest rank for the correct kclauma to push
down other chunks. Since a final parse is a sequence of chinaiksavers the given
sentence with no overlaps or gaps, we evaluate the alteesadt each position in
the sentence in a left-to-right manner.

Here, we usdlean Rank Scor® evaluate the performance of the HMMs. Mean
Rank Score is the mean of the distribution of ranks of corcaainks produced for a
given training corpus. ldeally, all correct chunks woulddtehe top and hence the
score would be 1. The aim is to get a Mean Rank Score as closag@dssible.

3.3 Parse Generation and Ranking

The third module is for identifying the best chunk sequencglobal parse for a
given sentence. This module generates all possible parepsfully in best first
order. We can of course limit the number of parses generétesjuired but the
ability to produce all possible parses is fundamental toattohitecture. Note that
we do not produces all possible parses first and then ratessnkdtinem - the parse
generation process inherently incorporates best-firsthea

Choosing the locally best chunks at each position in a giestesice does not
necessarily give us the best parse (chunk sequence) insscalrhe HMMs are
local to chunks and global information such as the probigtnli a chunk of a given
type starting a sentence or the probability of a chunk of éiqdar type occurring
next to a chunk of a given type are useful. These probalsilda be obtained from
a fairly small chunked corpus. We have used best first sedgdhniam to get the
best parse (chunk sequence) for a given sentence.

Best First Search Algorithm

In this section, we map our parse selection problem into plgsaarch problem
and show how best first search algorithm can be used to findetdibst parse.

Words and chunks in a sentence are referred to in terms ofdbiigns they
occupy in the sentence. Positions are marked between wsiadng from zero to
the left of the first word. The very first word is between pasis 0 and 1. A word
group containing the third and fourth words in the senteracele referred a/; 4.



The following steps describe how we map a given sentence amd groups
present in the sentence into a graph.

e The positions in the sentence are treated as nodes of tHangsraph. If a
sentence containg words then the graph contains+1 nodes corresponding
to the NV + 1 positions in the sentence.

e Word groupW;, ; is represented as an edge form nodie node;.

e The probability of a word groupV; ; given by HMM module and the tran-
sition probability from previous word group type to currembrd group type
are combined to estimate the cost of an arc between the neahes.

e We always start from the initial node Length of the sentenc¥ is the goal
node.

Now our parse selection problem of a sentence containingords becomes
the task of finding an optimal path from nod¢o nodeN.

Pseudo Code for Best First Search Algorithm:

startnode =0
goal_.node = N #(length of the sentence)
cur_best=<0,0,,, > # < pos, prob, chunktype, path, parse >

openset =()
fori=1tokdo
repeat

openset = addsuccessor (cubest, operset)
cur_best = findbest (operset)
until (cur_best.pos = goahode)
openset = openset— cur_best
print cur_best
done
function addsuccessor(cubest, operset)
chunkset ={x|x € CHUNKS and x.from = cubest.po$
foreach (chunkset) do
elem.pos = chunkset][i].to
elem.prob = curbest.prob + chunkset[i].prob +
P (cur_best.chunktype, chunkset[i].type)
elem.chunktype = chunkset][i].type
elem.path = update (cubest.path, chunkset][i])



elem.parse = updatparse (curbest.parse, chunkset][i])
openset = opensetU elem

done

openset = openset— cur_best

In best first search, we can inspect all the currently-aléelamodes, and rank
them on the basis of our partial knowledge. Here high ranknae¢hat the node
looks most promising in relation to the goal. At each step,sskect the most
promising of the nodes we have generated so far. We then dxparchosen node
to generate it successors. If one of them is a solution, weqoén|f not, all those
new nodes are added to the set of nodes generated so far. thgamost promising
node is selected and the process continues. In the worsttbaskest first search
algorithm runs in exponential time because it expands madgs at each level. In
big-O notation, this is stated &5b™), where b is the branching factor (i.e., the av-
erage number of nodes added to the open list at each levdljpas the maximum
length of any path in the search space. Memory consumptialsasa big problem,
apart from time complexity. The number of nodes that areestan memory rapidly
increases as the search moves deeper into the graph andlgxgpto many nodes
can cause the algorithm to run out of memory.

Beam search is a heuristic search algorithm that is an ogsitnon over best-first
search. Like best-first search, it uses a heuristic funcbastimate the promise of
each node it examines. Beam search, however, only unfads$hm most promis-
ing nodes at each depth, where m is a fixed number, the “beath’wit¥hile beam
search is space-bounded as a function of m, it is neithemagpnor complete when
m is finite. As m increases, beam search approaches bestefmsth in complexity.

Here we propose a modified beam search strategy. We do nottréseé beam
width to a fixed number, instead we put bounds on the proligsilof the alter-
natives available. If the next best available alternatssadt promising enough in
relation to the promise of the best alternative, we prunés ¢f course possible to
incorporate a wide variety of other statistical and macheaaning techniques for
optimum chunk sequence selection. We would need a reasosiabll high quality
chunked corpus for training. We have also explored A* best 8earch strategy.
Linguistic constraints should be expected to play an ingrantole in parse genera-
tion and ranking.

3.4 Bootstrapping

The HMM parameters can be refined through bootstrapping.ceSime need to
work with large data sets running into many hundreds of thads of sentences,



Baum-Welch parameter re-estimation would not be very praktinstead, we can
use parsed outputs to re-build HMMs. It may be recalled thigirally HMMs
were built from chunks obtained from the over-general fisitge parser taking all
chunks as equi-probable. By parsing a given sentence usengystem and taking
the top few parses only as training data, we can re-build HNMswill hopefully
be better. We can also simply use the top-ranked chunks-ounitding the HMMs.
This would reduce the proportion of invalid chunks in therthag data and hence
hopefully result in better HMM parameters. In the next sattiwe shall see that
this idea works and we can improve HMM parameters and imppavwser perfor-
mance as well.

These ideas and claims are substantiated with experims&athklas detailed in
the next section.

4 Experimentsand Results

4.1 Lexicon

Lexicon is the heart of any natural language parser. We haveldped a lexicon
of 138,000 head words including frequency of occurrenceefach tag for each
word. The lexicon has been obtained from the British Nati@@apus(BNC) [35],
an English text corpus of about 100 Million words, after agiderable amount of
analysis and pre-processing. It may be noted that the BNfusas POS tagged
but not parsed. Closed class words have been manually adhetke lexicon has a
coverage of 98% on the BNC corpus itself, 86% on the ReutevesN&orpus [36]
(about 180 Million words in size), 96.36% on the Susanneqehcorpus [37] and
95.27% on link parser dictionary.

4.2 Sentence Boundary Detection

We have developed a sentence segmentation module using &fgdscas training
data. We have used features such as delimiter, prefix, suftixadter-word and
extracted patterns from BNC corpus. We have divided ingtaruf features col-
lected into 20 different random sets where each set con&)A80 samples. We
have tested these samples using decision tree algorittuhsling ID3 and J4.8 us-
ing WEKA. Each test set has been subjected to 10 fold crosdatain. We have
obtained the F-measure for each random set. An average Buvieaf 98.70% has
been obtained, comparable to other published results.383édr more details.



43 Tag Set

We have studied various tag sets including BNC C5, BNC C7a®us and Penn
Tree Bank tag sets. Since our work is based on BNC 96 edititmn@b tag set, we
have made some extensions as and when required. We havg 7dtahgs in the
extended tag set.

Examples of Tags Added:

There is no distinction between nominative, accusativepasdessive pronouns
in the C5 tag set. This distinction is very much required im@&lating many un-
grammatical sentences. We have introduced four tags fosatiwe pronoun(PNA),
nominative pronoun(PNN), both nominative and accusatiga@un(PNC) and pos-
sessive pronouns(PPS).

There is no distinction distinction between interrogagprenoun and relative
conjunction in C5 tag set. Hence, we have added one more tHg™{r relative
conjunctions.

We have introduced new tag for the pre-determiners calletP’D

We have distributed the frequencies for the newly introdutzgys by manual
observation of some random samples either from our own migmearsed corpus
or the BNC corpus itself. For example, the word ‘which’ isgad only as “DTQ”
in BNC corpus. According to UCSG grammar, it can be eitherhaf three tags,
namely, relative conjunction, pronoun and determiner. \&eehtaken examples
from manual parsed corpus and studied the distribution g ta manual parsed
corpus. We found that 60% of the times the word ‘which’ is das “CJIR”,
25% of the times as “PNQ” and 15% of the times as “DTQ”. The tietcies are
distributed accordingly.

4.4 Manually Parsed Corpus Development

We have developed a manually parsed corpus of 4000 sentermsesing a wide
variety of sentence structures. 1000 sentences have bedomdy selected from
BNC corpus, 1065 sentences from ‘Guide to Patterns and Usdgeglish’ (here-

inafter referred to as GPUE corpus) [39] and 1935 sentencas €CoNLL-2000

test data. This corpus is thus very useful for evaluatingvireous modules of the
parsing architecture and also for bootstrapping.

This corpus was developed by parsing the sentences usingGB& shallow



parser for English and then manually checking the top pardevaaking corrections
where required. We felt this was far easier than parsing #meesices entirely by
hand.

4.5 Preprocessing Steps: Tagging

In the preprocessing step, plain sentences are taggedtasiniictionary. Here, we
have considered all possible tags in the dictionary for &giword. In case, the
word is not found in the dictionary we have used morpholdgickes to find its
tag. The most important aspects of inflectional morpholog§mglish including
plurals for nouns, past tense, gerundial and participiah®of verbs and degrees
of comparison for adjectives are handled. Derived formsdamectly found in the
dictionary.

The following are the most productive rules for generatmigectional forms in
English:

¢ plural forms of noun and -s form of lexical verbs

Superlative forms of adjectives (e.g. oldest, hottesyest

Comparative forms of adjectives (e.g. better, older)

-ing forms of lexical verbs (e.g. forgetting, living, retung)

Past and Past participle forms of lexical verbs (e.qg. livetirned, whetted)

Finally, if the word is directly not found in the dictionarynd the root of that
word from morphological analysis also not found in the dinary, we have consid-
ered the word as proper noun and assigned NPO tag for the word.

A POS tagger can be included.

4.6 Finite State Grammar

We have developed a nondeterministic finite state grammadémtifying English
word groups. The Finite State Machine has a total of 50 stdte$ich 24 are final
states. See [40] for further details.



4.6.1 Example

Sentence: Thesunrisesin the east.

Actual word groups in the given sentence

<ng><0- 2><ATO0><t he>##<NN1><sun> <vg><2- 3><WWZ><ri ses>
<ng><3- 6><PRP><i n>##<ATO><t he>##<NNl><east >

The following word groups are produced by our FSM:

<ng><0- 2><ATO0><t he>##<NN1><sun>

<ng><0- 3><ATO><t he>##<NNL><sun>##<NN2><r i ses>

<ng><0- 6><ATO><t he>##<NNL1><sun>##<NN2><r i ses>##<PRP><i n>
##<ATO><t he>##<NP0><east >

<nNg><0- 6><ATO><t he>##<NNL><sun>##<NN2><r i ses>##<PRP><i n>
##<ATO><t he>##<NNl><east >

<ng><1- 2><NN1><sun>

<ng><1- 3><NNI><sun>##<NN2><r i ses>

<Ng><1- 6><NN1I><sun>##<NN2><r i ses>##<PRP><i n>##<AT0><t he>
##<NN1l><east >

<ng><1- 6><NN1><sun>##<NN2><r i ses>##<PRP><i n>##<AT0><t he>
##<NPO><east >

<vg><2- 3><WZ><ri ses>

<ng><2- 3><NN2><rj ses>

<Vg><2- 4><WZ><r i ses>##<AVP><i n>

<Ng><2- 6><NN2><r i ses>##<PRP><i n>##<AT0><t he>##<NN1><east >
<NQg><2- 6><NN2><r i ses>##<PRP><i n>##<AT0><t he>##<NP0><east >
<part ><3- 4><AVP><i n>

<nQg><3- 6><PRP><i n>##<AT0><t he>##<NNl><east >

<ng><3- 6><PRP><i n>##<ATO><t he>##<NP0><east >

<ng><4- 6><ATO><t he>##<NNl><east >

<ng><4- 6><ATO><t he>##<NP0><east >

<ng><5- 6><NN1><east >

<ng><5- 6><NP0O><east >

We have evaluated the performance of the FSM module on \&cogora - Su-
sanne Parsed Corpus, CoNLL 2000 test data set and on our hygraraed corpus
of 4000 sentences. The evaluation criteria is Recall alore=ghe aim here is only
to include the correct chunks.

The Susanne corpus [37] is a manually parsed corpus comgeatiout 130,000
words in 6891 sentences. Some preprocessing was necegsahjguities with



apostrophes have been resolved. Spelling errors mentionge Susanne docu-
mentation have been corrected. Since the structure of tiee mautput in the Su-
sanne corpus differs somewhat from that of UCSG, suitablgping schemes had
to be developed and validated [41]. Plain text sentences wdracted and given
as input to the UCSG shallow parser.

In Susanne Corpus, phrases are classified into eight typgsgnely, verb
phrase, noun phrase, adjective phrase, adverb phrasasygirepal phrase, deter-
miner phrase, numeral phrase, genitive phrase.

Results are given in table 1 for Noun, Verb, Adjective and édivgroups.

Table 1: Performance of the Finite State Parser on Susanmei€o

Word Group Type| No. of Groups| No. of Groups| % Recall
in Test Data) Recognized

Noun Group 47735 41016 85.92

Verb Group 17559 17179 97.83

Adjective Group 2619 1733 66.17

Adverb Group 5516 4701 85.22

Overall 73429 64629 88.02

Overall, 88.02% of phrases in the Susanne corpus have beecitpidentified.
97.83% of all the verb groups could be correctly identified. Faikine the case of
verb groups are limited to complex cases such as “have naveot for a long time,
had”.

We have done analysis of the word groups that are not coveresib FSM
grammar. The main reason for failures we found is that in Basaorpus the defi-
nition of phrases are very much different from the chunks reeusing here. Some
phrases in Susanne corpus are recursive in nature. We hase gifew examples
of failures here.

The examples given below are the noun phrases in Susannascaevhpich in-
clude other phrases or clauses within the noun phrases éhess

e < ng > of the little pink woman who chose to be called auntie
e < ng > the largest majority given a candidate in recent years

e < ng > in a society deeply fissured by antagonisms



The examples given below are the adjective phrases in Sesarpus, which
include other phrases within the adjective phrases themsel

e < ajg > comfortable about her child

e < ajg >asneatasican

As another example of the kinds of differences, the word aidds considered
as noun in UCSG dictionary, where is it is treated as adve8usanne corpus.

The CoNLL 2000 test data set consists section 20 of the WedleStlournal
corpus (WSJ) and includes 47377 words and 23852 chunkseloufrent evalua-
tion, LST chunks (list items) have been excluded. Also, mthiCSG framework,
there are no separate PPs - PPs are included in noun group&e Zgives the
performance in the first set of experiments [28].

Table 2: Evaluation of Finite State Parser on CoNLL 2000 Dedth Set

CoNLL Chunk Type| UCSG Terms| Chunks in Chunks| % Recall
Test Data| Recognized
NP ng 12422 10588 85.24
VP vg,infg,vgs 4658 3786 81.28
ADVP avg 866 698 80.60
ADJP ajg,ags 438 398 90.87
SBAR sub,rel 535 507 94.77
PRT part 106 105 99.06
CONJP sub 9 9 100.00
INTJ intg 2 1 50.00
Total 19036 16092 84.53

There are a few minor differences in the way chunks are defiméte CoNLL
2000 chunking task and UCSG. Punctuation marks are remgvagbe-processor
and handled separately elsewhere in UCSG. Currency symbolsass and# are
considered part of numbers in UCSG while they become sepamaids in CONLL.
CoNLL splits chunks across the apostrophes in genitives &ockwell Interna-
tional Corporation’s tulsa uniwvhile UCSG does not. To-infinitives as @aontinue
to plummetre recognized separately in UCSG while they may form paat\élP in
CoNLL. Also, in keeping the UCSG philosophy, PPs are notgeced separately
in UCSG, they are included in noun groups. In order to get tebétel for the true
performance of the UCSG shallow parser, the above diffeeneere discounted
for and performance checked again. The results are givealheT3. There is no



change in the performance for other groups. Overall, 18185619130 chunks
have been correctly identified, giving a Recall of 95.06%.

Table 3: Evaluation of the Finite State Parser on CoNLL Daafter mapping

CoNLL Chunk Type| UCSG Terms| Chunks in Chunks| Recall

Test Data| Recognized (%)
NP,PP ng 12261 11605| 94.65
VP vg 4283 4223 | 98.60
- infg 625 610| 97.6
ADVP avg 866 710 | 82.56
ADJP ajg 438 414 | 94.52
SBAR sub 544 517 | 95.03
PRT part 106 105| 99.06
INTJ intg 2 1 50

Table 4 gives the performance of the FSM module on the manpaksed cor-
pus. From the table 4, we can observe that very high recalb@®) is achieved on
manually parsed corpus.

Table 4. FSM Evaluation on Manually Parsed Corpus

Chunk type Symbol | No of Chunks| No. of Chunks| Recall
in Corpus Found (%)
Noun ng 15648 15627 99.86
Verb vg 6827 6817 99.85
Adverb avg 908 836 92.07
Adjective ajg 869 863 99.31
Coordinate conjunction| coord | 460 457 99.35
Subordinate conjunction sub 1048 1048 100
Relative conjunction rel 460 460 100
Particle part 31 31 100
To infinitive infg 955 948 99.27
Interjection intg 7 7 100
Adjective special ags 15 15 100
Verb special vgs 475 475 100
Total - 27703 27584 99.56

We have done analysis of the word groups that are not coveremlib FSM
grammar. The main reason we found that in CoNLL corpus, sofrtheowords




have tag differences. For example, the word “according $od isingle preposi-
tion in UCSG dictionary where as the words are tagged as aapprepositions in
CoNLL corpus. Multi-token adverbs such as ‘at last’, ‘noden’ are not identi-
fied by our grammar as on date. There are also tag differenetsgebn CoNLL
and UCSG tag set. We have considered the word ‘today’ as moauridictionary
whereas in CoNLL it is considered as adverb.

The table 5 shows the number of extra phrases produced byéngeneraliza-
tion of FSM grammar. In manually parsed corpus, there ar®2¢orrect chunks.

Table 5: Analysis of FSM Module - Test Data of 4000 senten@asniy 27703
phrases in Manually Parsed Corpus

Plain POS tagged
Number of phrases produced by FSM module 313306| 136926
% of correct chunks recognized by FSM modul89.56 | 99.96

We may conclude that our finite state grammar is very goodaéngrizing the
correct chunks in most cases. By design, the FSM also predoiter possibili-
ties and the UCSG architectures provides a separate manlulating and ranking
the chunks produced by the FSM so that the best ones can loteskter further
processing.

4.7 Developing HMMs

HMMs were initially developed from 3.7 Million POS-taggeeigences taken from
the BNC corpus. Sentences with more than 40 words were exdlu&ince we

use an extended C5 tag set, POS tags had to be mapped to theéeekset where
necessary. HMM parameters are estimated from the chunkisiped by the Finite
State grammar, taking all chunks to be equi-probable. S¢p&tMMs are built for

noun groups, verb groups, adjective groups, adverb granpsitive groups and

one HMM for all other chunk types.

The probability of a given chunR (O, Q|\) has been calculated using the equa-
tion

P(O,Q|\) = 7Tq1bQ1(01>aq1,q2bq2 (02)aq27q3 T a/‘Itfly‘Itth(Ot) (5)
whereq; ,q2, - - -, q; IS @ State sequencs,, 0»,- - -, 0; IS @an observation sequence.

The chunks are ranked accordingly. It is interesting to oleséhe Recall and
Mean Rank Score within the top k ranks, where k is a given €uéwk. Table 6



shows that there is a clear tendency for the correct chunkalible up close to the
top. For example, more than 95% of the correct chunks wernadauthin the top

5 ranks. Nearly 99% of the correct chunks are within a rank0f 1

Table 6: Performance of the HMM Module on the Manually PaxSetpus of 4000

sentences - Plain Sentences as Input

ut

Plain Sentences as Input | POS Tagged Sentences as In
Cutoff | Mean Rank| Cumulative Recall Mean Rank| Cumulative Recal
Score (%) Score (%)
1 1 43.06 1 62.74
2 1.38 69.50 1.28 86.97
3 1.67 84.72 1.43 95.64
4 1.85 91.69 1.50 98.31
5 1.96 95.13 1.54 99.25
6 2.04 96.91 1.55 99.61
7 2.08 97.80 1.56 99.72
8 2.12 98.39 1.56 99.79
9 2.14 98.70 1.57 99.81
10 2.16 98.93 1.57 99.82
4.7.1 Example

Sentence: Thesunrisesin the east.

The following word groups and their ranks given by HMM module
<ng><0- 2><ATO><t he>##<NN1><sun> <- 10. 8199668891226><1><4><1>

<ng><0- 3><ATO><t he>##<NNL><sun>##<NN2><ri ses>
<-22.645126557751><2><4><1>

<ng><0- 6><ATO><t he>##<NNL><sun>##<NN2><r i ses>##
<PRP><i n>##<AT0><t he>##<NNl><east > <- 35. 0961918977221><3><4><1>

<ng><0- 6><ATO><t he>##<NNL><sun>##<NN2><r i ses>##
<PRP><i n>##<AT0><t he>##<NP0><east > <- 36. 6074325860112><4><4><1>

<vg><2- 3><WZ><rijses> <-10.3267169484799><1><5><2>
<ng><2- 3><NN2><ri ses> <-11.7411565945832><2><5><2>

<vg><2- 4><VWZ><r i Ses>##<AVP><i n> < -16. 744490507491><3><5><2>



<ng><2- 6><NN2><r i ses>##<PRP><i n>##<AT0><t he>## <NNl><east >
<-24.1922219345543><4><5><2>

<ng><2- 6><NN2><r i ses>##<PRP><i n>##<AT0><t he>## <NP0><east >
<-25.7034626228434><5><5><2>

<part ><3- 4><AVP><i n> <-5.39011993798651><1><3><3>

<ng><3- 6><PRP><i n>##<AT0><t he>##<NN1><east >
<-13. 3023793305427><2><3><3>

<ng><3- 6><PRP><i n>##<AT0><t he>##<NP0><east >
<-14. 8136200188319><3><3><3>

<ng><4- 6><ATO><t he>##<NNl><east > <- 10. 6864467975293><1><2><4>

<ng><4- 6><ATO><t he>##<NP0><east > <- 12. 1976874858185><2><2><4>

Each entry includes the chunk type, the starting and endisgipns, the chunk
itself with the POS tags of all the words, log probability givby HMM, rank,
number of items in the set, and the serial number of the braggoints. It may be
noted that the correct chunks have been ranked at 1, 1 angé&ciasly.

We have also done some experiments to see the effect of thefdraining data
used to build HMMs on HMM performance. We have found that asuge more
and more training data, the HMM performance is improvinggigantly. Since we
are dealing with very large data sets, even a change in tlmmdetecimal place is
very significant. The results are shown in table 7.

Table 7: Effect of the size of training data on HMM performanc

Size of the data | Mean Rank
(No. of sentences

0.1Million 2.29
1 Million 2.27
3.7 Million 2.26

4.8 Parse Generation and Ranking

The parse generation module has been evaluated on the nyapaeded corpus
in terms of rank of the fully correct parse and also in termg@ifcentage of cor-
rect chunks in the top parse. Plain sentences and POS taggethses have been
considered separately for input. The results are sumntdhrizéable 8. Here, we
have restricted the parsing time taken by the best first Beslgorithm to 3 epoch



seconds for each sentence because the time and space ayriptarases expo-
nentially as branching factor (b) and length of the senténtencreases.

Table 8: Performance of the Best First Search Module - Test Biad000 Sentences

Rank _ No. of correct Parses
(Plain Sentences) (POS tagged Sentences)
1 1130 1774
2 351 487
3 185 194
4 85 137
5 70 129
% of Correct parses 45.52 68.02
intop 5
% of Correct chunks 78.70 78.42
in top parse
Total Recall 54.67 86.45
Time taken to parse 1h:55m:33sec 0h:31m:49sec

From the table 8, we can see that when we restrict best firstis@aodule to
give best five parses and time limit to 3 epoch seconds, we #a&2% correct
parses within top 5 for plain sentences and 68.02% of copardes within top 5
for POS tagged sentences. The total number of sentencesddayshe best first
search module is only 54.67% for plain sentences and 86.45%¢ POS tagged
sentences within the stipulated time. It must be noted timaesthe finite state
grammar is recognizing correct chunks with a very high remadl since the HMM
modules are used only for ranking and no pruning is donegcbparses will surely
be generated in most cases provided we have no time limits.

We have analyzed the complexity involved in exhaustivecetr produce all
the parses for a given sentence. We have summarized thésrgstable 9. We can
see that the total number of parses for each sentence iesreaponentially with
the length of the sentence and also branching factor. Thdtsdsave also shown
that POS tagging greatly helps in parsing by reducing theptexity.



Table 9: Analysis of Complexity - Plain Sentences

Corpus | Average Sentence Lengt Average No. of Parses

" Plain Sentences POS Tagged Sentences
GPUE 7.02 381 5
BNC 15.78 12,428,029 401
CoNLL 20.06 786,473,522,192 81,794

It may be noted that the performance of the parser in termssadbility to
produce the correct parse is limited only by the Finite S@tammar and the dic-
tionary, since the other modules do not resort to any prunkgwever, it is con-
ceivable that in practical usage, we may impose a cutoff dtahgt to produce
only the top k parses. In this latter case, the percentagasdscwhere the fully
correct parse is included could also be observed.

48.1 Example
Sentence: Thesunrisesin the east.

The following parses are the ranked order given by BFS maflwle use dictionary
tags

<ng>[ <ATO><t he>##<NN1><sun>##<NN2><r i ses>##<PRP><i n>##<AT0><t he>##
<NNl><east >] </ng> -- -35.2345922674581

<ng>[ <ATO><t he>##<NNL1><sun>] </ ng> <vg>[ <WZ><ri ses>] </ vg>
<ng>[ <PRP><i n>##<AT0><t he>##<NNl1><east >] </ ng> --
- 35. 9226802717702

<ng>[ <ATO><t he>##<NN1><sun>] </ ng>
<ng>[ <NN2><r i ses>##<PRP><i n>##<AT0><t he>##<NNl><east >] </ ng> --
- 36. 504440120609

<ng>[ <ATO><t he>##<NN1><sun>##<NN2><r i ses>##<PRP><i n>##<AT0><t he>##
<NPO><east >] </ng> -- -36.7458329557472

<ng>[ <ATO><t he>##<NN1><sun>] </ ng> <vg>[ <WZ><ri ses>] </ vg>
<ng>[ <PRP><i n>##<AT0><t he>##<NP0><east >] </ ng> --
-37. 4339209600594

<ng>[ <ATO><t he>##<NNL><sun>##<NN2><r i ses>] </ ng>
<ng>[ <PRP><i n>##<AT0><t he>##<NNl><east >] </ ng> --
- 37.4397571852259

<ng>[ <ATO><t he>##<NN1><sun>] </ ng>



<ng>[ <NN2><r i ses>##<PRP><i n>##<AT0><t he>##<NP0><east >] </ ng> - -
- 38. 0156808088982

<ng>[ <ATO><t he>##<NN1><sun>] </ ng> <ng>[ <NN2><ri ses>] </ ng>
<ng>[ <PRP><i n>##<AT0><t he>##<NNl><east >] </ ng> --
- 38. 7096050383768

<ng>[ <ATO><t he>##<NN1><sun>##<NN2><ri ses>] </ ng>
<ng>[ <PRP><i n>##<AT0><t he>##<NP0><east >] </ ng> --
- 38. 950997873515

<ng>[ <ATO><t he>##<NN1l><sun>] </ ng> <vg>[ <WZ><ri ses>##<AVP><i n>] </ vg>
<ng>[ <ATO><t he>##<NNl><east >] </ ng> -- -39.724521297768

<ng>[ <ATO><t he>##<NN1><sun>] </ ng> <ng>[ <NN2><ri ses>] </ ng>
<ng>[ <PRP><i n>##<AT0><t he>##<NP0><east >] </ ng> - -
-40. 220845726666

<ng>[ <ATO><t he>##<NN1><sun>] </ ng> <vg>[ <WZ><ri ses>##<AVP><i n>] </ vg>
<ng>[ <ATO><t he>##<NP0><east >] </ ng> -- -41.2357619860571

<ng>[ <ATO><t he>##<NNL><sun>##<NN2><r i ses>] </ ng>
<part >[ <AVP><i n>] </ part > <ng>[ <ATO><t he>##<NNl><east >] </ ng> - -
-46.222079476789

<ng>[ <ATO><t he>##<NN1l><sun>] </ ng> <ng>[ <NN2><ri ses>] </ ng>
<part >[ <AVP><i n>] </ part > <ng>[ <ATO><t he>##<NNl><east >] </ ng> - -
-47.4919273299399

<ng>[ <ATO><t he>##<NN1><sun>##<NN2><ri ses>] </ ng>
<part >[ <AVP><i n>] </ part > <ng>[ <ATO><t he>##<NP0><east >] </ ng> --
-47.7333201650782

<ng>[ <ATO><t he>##<NN1><sun>] </ ng> <ng>[ <NN2><ri ses>] </ ng>
<part >[ <AVP><i n>] </ part > <ng>[ <ATO><t he>##<NP0><east >] </ ng> --
-49. 0031680182291

<ng>[ <ATO><t he>##<NNL1><sun>] </ ng> <vg>[ <WZ><ri ses>] </ vg>
<part >[ <AVP><i n>] </ part > <ng>[ <ATO><t he>##<NNl><east >] </ ng> - -
-62.3971218959318

<ng>[ <ATO><t he>##<NN1l><sun>] </ ng> <vg>[ <WZ><ri ses>] </ vg>

<part >[ <AVP><i n>] </ part > <ng>[ <ATO><t he>##<NP0><east >] </ ng> - -
- 63. 908362584221

It may be observed that there are 18 parses and the fullyatqraese is in rank
two.

We have also implemented a modified beam search algorithmpooive the



parser efficiency in terms of time and space. Here, we have &épreshold on

the probability so that the word groups which are having pholity less than the

threshold can be pruned. In this way, we can reduce the nuoflEmbinations

the parser has to explore and also save a good deal of mematryhiB may cause
pruning of some of correct parses. If we do not want to loogedbrrect parse,
we have to increase the threshold accordingly. As the tlotdshcreases, the com-
plexity approaches that of the best first search. The resultsble 10 have been
obtained for a beam threshold of 1.

Table 10: Performance of the modified Beam Search - Test D&@0® Sentences

Rank No._ of correct Parses
Plain POS tagged
1 1262 1796
2 259 240
3 67 36
4 35 22
5 9 4
% of Correct parses 40.8 52.45
intop 5
% of Correct chunks 67.98 74.31
in top parse
Total Recall 100.00 99.87
Time taken Oh:15m:31se¢ Oh:0m:18seq
to parse

We have also studied effect of increase in threshold on ggeseration. As we
increase threshold, the performance approaches that begtdirst search, but the
time taken to parse will also increase. The results are shovable 11.



Table 11: Performance of the modified Beam Search with isongathreshold -
Test Data of 4000 Sentences

Rank Threshold 1| Threshold 3
1 1796 1796
2 240 497
3 36 200
4 22 142
5 4 119
% of Correct parses 52.45 68.85
intop 5
% of Correct chunksg 74.31 74.31
in top parse
Time taken 0h:0m:18se¢ 6h:07m:20seq
to parse

We have also studied the percentage correct tags assigtiezitords in the top
parse of modified beam search module. We have observed tiid8®f the words
are assigned correct POS tags in the top parse. This showadisaof the times the
top parse given by the parse generation module is almostatam terms of POS
tags and may only have problems with chunk boundary deteclitie results are
shown in table 12.

Table 12: Evaluation of the POS tags in the top parse of pasergtion module
(modified beam search)

Number of words 62268
Number of words assigned Correct POS tagS59784
% of correct POS tags 96.01

It may be observed that the only kind of linguistic constraiwe have used so
far is the structure of chunks as captured by the Finite Ska#gnmar. It is in fact
interesting to see fully correct parse (that is, chunk saqegbeing produced by
the system in many cases before applying any sentence iegaldtic constraints
at all. We have not included a grammar of clause structueratthical structure
of clauses and phrases in sentences, or functional steuctunstraints such as sub-
categorization and selectional restrictions or even senagireement rules. Further
improvements to the parser performance will critically deg on judicious appli-
cation of relevant linguistic constraints within the oJeeachitecture.



Also, more work is needed to assign thematic roles to the klsaeguences
produced by the parser.

4.9 Bootstrapping

We hypothesize that the HMM parameters can be refined thrbogkstrapping.
Initial HMMs were developed from chunks produced by the eyemeral Finite
State Grammar, taking all chunks to be equi-probable. Omed¢itMMs have been
built, we can use the same HMMs to rate and rank the chunksuatitef produce
parses using best first search. From the results obtainésl clear that the top
ranked chunks and chunks from the top ranked parses will ggvieetter data for
re-building HMMs. The new data sets so generated contaigleehipercentage of
correct chunks. In other words, noise is reduced. Howeliersize of the data set
also comes down as shown in table 13.

Table 13: Bootstrapping: Data Set Size

HMM development Phase No. of No. of
Sentences Chunks
Initial HMM building with FSM Output 3770917 | 122748054

Bootstrapping with HMM Top Ranked Chunks2008877 | 22368823
Bootstrapping with Best first search Top Parsd 804827 | 11061598

To prove the bootstrapping hypothesis, we have carriedexgral experiments.
Plain text sentences from BNC corpus, 5 to 20 words in lenigdéive been used.
All possible chunks are obtained using the Finite StateeSEaammar-Parser and
HMMs built from these chunks. In one experiment, only therdtarated highest by
these very HMMs are taken as training data for bootstrappim@ second experi-
ment, best first search is also carried out and chunks fronotheanked parse alone
are taken for bootstrapping. In a third experiment, dataftbese two sources have
been combined. Best results were obtained when the chuokstfie top parse
alone were used for bootstrapping. Table 14 shows the effdobotstrapping on
HMM module.



Table 14: Effect of Bootstrapping after iteration-1: on 8@&ntences from Manu-
ally Parsed Corpus containing a total of 27703 chunks

Initial Iteration-1 Iteration-2

Cut- | No. of | Recall| Mean| No. of | Recall| Mean| No. of | Recall| Mean

-off | Chunks Rank | Chunks Rank | Chunks Rank
1 11929 | 43.06| 1.0 | 12611 | 4552 | 1.0 13090 | 47.25| 1.0
2 19254 | 69.50| 1.38 | 19787 | 71.43| 1.36 | 20170 | 72.81| 1.35
3 23470 | 84.72| 1.67 | 23609 | 85.22 | 1.63 | 23811 | 85.95| 1.60
4 25402 | 91.69| 1.85 | 25418 | 91.75| 1.80 | 25541 | 92.20 | 1.77
5 26356 | 95.13| 1.96 | 26303 | 94.94| 1.90 | 26401 | 95.30| 1.87
6 26848 | 96.91| 2.04 | 26805 | 96.75| 1.98 | 26863 | 96.97 | 1.94
7 27096 | 97.80| 2.08 | 27078 | 97.74| 2.03 | 27108 | 97.85| 1.99
8 27257 | 98.39 | 2.12 | 27226 | 98.28 | 2.06 | 27249 | 98.36 | 2.02
9 27344 | 98.70| 2.14 | 27326 | 98.63 | 2.09 | 27336 | 98.68 | 2.04
10 | 27406 | 98.93 | 2.16 | 27393 | 98.88 | 2.11 | 27407 | 98.93 | 2.06

It may be observed that the percentage of correct chunksrieasing in the top
4 positions and decreasing thereafter, clearly showingabatistrapping has helped
to rate and rank chunks better.

There is also some improvement in the final parse when the HidiMained
through bootstrapping are used. See table 15.

Table 15: Effect of Bootstrapping on Parse Generation -t Bist Search - Epoch

Time limit 3)
No. of correct Parses
Rank Plain Sentences | POS Tagged Sentences
Initial | Iter-1 | Iter-2 | Initial | Iter-1 | Iter-2
1 1130 | 1172 | 1210 | 1774 | 2113 | 2193
2 351 | 308 | 352 | 487 | 470 | 495
3 185 | 152 | 157 | 194 | 186 | 164
4 85 82 83 137 | 132 | 129
5 70 72 68 129 89 91
% of Correct parses 45.52 | 44.65| 46.75| 68.02 | 74.75| 76.80
intop 5
% of Correct chunks 78.70| 83.17| 83.92| 78.42| 87.51| 88.26
in top parse




49.1 Example

Sentence: Thesunrisesin the east.

The following are the top 5 parses in ranked order given by Bie8ule after boot-
strapping if we use dictionary tags

<ng>[ <ATO><t he>##<NN1><sun>] </ ng> <vg>[ <VWWZ><ri ses>] </ vg>
<ng>[ <PRP><i n>##<AT0><t he>##<NP0><east >] </ ng> --
-37.1886283215909

<ng>[ <ATO><t he>##<NN1><sun>] </ ng> <vg>[ <WZ><ri ses>] </ vg>
<ng>[ <PRP><i n>##<AT0><t he>##<NNl><east >] </ ng> --
- 38. 8822563306516

<ng>[ <ATO><t he>##<NN1><sun>##<NN2><ri ses>] </ ng>
<ng>[ <PRP><i n>##<AT0><t he>##<NP0O><east >] </ ng> --
- 39. 357919583567

<ng>[ <ATO><t he>##<NN1><sun>##<NN2><r i ses>] </ ng>
<ng>[ <PRP><i n>##<AT0><t he>##<NNl><east >] </ ng> --
-41. 0515475926276

<ng>[ <ATO><t he>##<NN1><sun>] </ ng> <ng>[ <NN2><ri ses>] </ ng>
<ng>[ <PRP><i n>##<AT0><t he>##<NP0><east >] </ ng> --
-41. 7994535067038

It may be observed that the correct parse is still in secorsitipa but the top
parse is far better.

In the table 16, we have shown the effect of bootstrapping odified beam
search algorithm results. Interestingly, bootstrappitep amproved the perfor-
mance of beam search. This is due to the fact that the distiibof probabilities
among the phrases has improved with bootstrapping.



Table 16: Effect of Bootstrapping on Parse Generation - fretiBeam Search
with threshold 1

No. of correct Parses
Rank Plain Sentences | POS Tagged Sentences
Initial | Iteration-2| Initial Iteration-2
1 1262 1386 1796 2267
2 259 259 240 188
3 67 57 36 17
4 35 33 22 13
5 9 14 4 6
% of Correct parses 40.08| 43.72 52.45 62.27
intop 5
% of Correct chunks 67.98 76.84 74.31 86.32
in top parse

The performance figures given above need to interpreted eaith. We have
seen that the percentage correct tags assigned to the woattiis top parse is over
96%. This shows that most of the times the top parse givendpdinse generation
module is almost correct in terms of POS tags and may only hamer problems
with chunk boundary detection. The very definition of churksnuch more de-
manding in UCSG - we expect prepositions to be combined viiéhappropriate
noun groups, we expect correct handling of adverb partigldsh may be ambigu-
ous with a preposition, etc. A quick check by manual obsewashows that in
most cases the top parse is reasonably good if not 100% peidso, the top parse
may be more or less adequate for applications such as IE. Moreugh examina-
tion of this aspect is planned and all that we wish to say nawasone should not
be disheartened by the not-so-high performance figurestephere.

4.10 Comparison with other Systems
1. Plain Sentence:

Concern for the environment has always topped our agenda.

Tagged Sentence:

<VVB_NNl1><concer n>##<PRN_PRP_CJS AVP><f or >##<AT0><t he>##
<NN1><envi r onnment >##<VHZ><has>##<AV0><al ways>##<VVN_VVD><t opped>
##<DPS><our >##<NN1l><agenda>##

UCSG output:



The chunk types in UCSG shallow parsing system are: 1) ngn gooup, 2) vg:
verb group, 3) vgs: verb group special, 4) avg: adverb gr&)mjg: adjective
group, 6) ags: adjective group special, 7) coord: cooréiranjunction, 8) sub:
subordinate conjunction, 9) rel: relative conjunction) p@rt: particle group, 11)
infg: infinitive group, 12) intg: interjection group.

The top 5 parses from UCSG shallow parser in ranked orderiaes ¢pelow. Top
parse is fully correct.

<ng>[ <NN1><concer n>##<PRP><f or >##<AT0><t he>##<NN1><envi r onment >] </ ng>
<vg>[ <VHZ><has>##<AV0><al ways>##<VWN><t opped>] </ vg>
<ng>[ <DPS><our >##<NNl1><agenda>] </ ng>

<ng>[ <NN1><concer n>] </ ng>

<ng>[ <PRP><f or >##<AT0><t he>##<NNl><envi r onnent >] </ ng>
<vg>[ <VHZ><has>##<AV0><al ways>##<VWN><t opped>] </ vg>
<ng>[ <DPS><our >##<NNl1><agenda>] </ ng>

<ng>[ <NN1><concer n>##<PRP><f or >##<AT0><t he>##<NN1><envi r onnent >] </ ng>
<vg>[ <VHZ><has>] </ vg> <aj g>[ <AV0><al ways>##<VVN><t opped>] </ aj g>
<ng>[ <DPS><our >##<NNl><agenda>] </ ng>

<ng>[ <NN1><concer n>##<PRP><f or >##<AT0><t he>##<NN1><envi r onnent >] </ ng>
<vg>[ <VHZ><has>##<AV0><al ways>] </ vg> <aj g>[ <VWN><t opped>] </ aj g>
<ng>[ <DPS><our >##<NNl><agenda>] </ ng>

<ng>[ <NNl><concer n>##<PRP><f or >##<AT0><t he>##<NN1><envi r onnment >] </ ng>
<vg>[ <VHZ><has>] </ vg> <avg>[ <AVO0><al ways>] </ avg>
<vg>[ <VWD><t opped>] </ vg> <ng>[ <DPS><our >##<NNl><agenda>] </ ng>

Memory Based Shallow Parser Output:

[ NP concern/ NN NP] {PNP [Prep for/IN Prep] [NP the/DT environment/ NN
NP] PNP} [VP has/VBZ al ways/ RB t opped/ VBN VP] [ NP our/PRP agenda/ NN
NP . /.

By now it should be very clear as to why it is very important tortoine prepo-
sitions with noun groups appropriately to get a clear regqaifthe given sentence.
UCSG output is generally far better than the output of otlaesing systems.

Cognitive Computation Group Shallow Parser Output:

[NP concern] [PP for] [NP the environnment] has [ ADVP al ways] [ VP
t opped] [ NP our agenda]



UCSG requires that every word in the given sentence is imdud the final
parse. Leaving out words like makes the parse output so nasshuseable.

2. Plain Sentence:
He is one of the authors who are destined to be immortal.

Tagged Sentence:

<PNN><he>##<VBZ><i s>##<CRD_PNl ><one>##<PRN_PRF_AVP><of >
##<ATO><t he>##<NN2><aut hor s>##<NP0_CIR_PNQ><who>##<VBB><ar e>##
<WN><dest i ned>##<PRN_TO0D_ PRP_AVP><t o>##<VBB><be>##<AJ0><i nmor t al >##

UCSG output:

The top 5 parses from UCSG shallow parser in ranked orderiaes ¢pelow. Top
parse is fully correct. 'who’ is treated as a conjunctiomadiucing a relative clause,
thereby facilitating extensions to a full parsing systenen@are with the outputs
of other parsers below.

<ng>[ <PNN><he>] </ ng> <vg>[ <VBZ><i s>] </ vg>

<ng>[ <CRD><one>##<PRF><of >##<AT0><t he>##<NN2><aut hor s>] </ ng>
<rel >[ <CIR><who>] </ r el > <vg>[ <VBB><ar e>##<VVN><dest i ned>] </ vg>
<i nf g>[ <TQO><t 0>##<VBB><be>] </ i nf g> <aj g>[ <AJO><i nmort al >] </ aj g>

<ng>[ <PNN><he>] </ ng> <vg>[ <VBZ><i s>] </ vg>

<ng>[ <PNI ><one>##<PRF><of >##<AT0><t he>##<NN2><aut hor s>] </ ng>
<rel >[ <CIR><who>] </ rel > <vg>[ <VBB><ar e>##<VVN><dest i ned>] </ vg>
<i nf g>[ <TQO><t 0>##<VBB><be>] </ i nf g> <aj g>[ <AJO><i nmort al >] </ aj g>

<ng>[ <PNN><he>] </ ng> <vg>[ <VBZ><i s>] </ vg> <aj g>[ <CRD><one>] </ aj g>
<ng>[ <PRF><of >##<AT0><t he>##<NN2><aut hor s>] </ ng>

<r el >[ <CIR><who>] </ r el > <vg>[ <VBB><ar e>##<VVN><dest i ned>] </ vg>

<i nf g>[ <TQO><t 0>##<VBB><be>] </ i nf g> <aj g>[ <AJO><i nmort al >] </ aj g>

<ng>[ <PNN><he>] </ ng> <vg>[ <VBZ><i s>] </ vg> <ng>[ <CRD><one>] </ ng>
<ng>[ <PRF><of >##<AT0><t he>##<NN2><aut hor s>] </ ng>

<r el >[ <CIR><who>] </ r el > <vg>[ <VBB><ar e>##<VVN><dest i ned>] </ vg>
<i nf g>[ <TQO><t 0>##<VBB><be>] </ i nf g> <aj g>[ <AJO><i nmort al >] </ aj g>

<ng>[ <PNN><he>] </ ng> <vg>[ <VBZ><i s>] </ vg>

<ng>[ <CRD><one>##<PRF><of >##<AT0><t he>##<NN2><aut hor s>] </ ng>
<ng>[ <PN@<who>] </ ng> <vg>[ <VBB><ar e>##<VVN><dest i ned>] </ vg>

<i nf g>[ <TQO><t 0>##<VBB><be>] </ i nf g> <aj g>[ <AJO><i nmort al >] </ aj g>



Memory Based Shallow Parser Output:

[NP He/ PRP NP] [VP is/VBZ VP] [NP one/CD NP] {PNP [Prep of/IN Prep]
[ NP t he/ DT aut hors/NNS NP] PNP} [ NP who/ WP NP] [ VP are/ VBP
destined/ VBN to/ TO be/VB VP] [ADIP imortal //JJ ADIP] ./.

Cognitive Computation Group Shallow Parser Output:

[NP H] [VWPis] [NPone] [PPof] [NP the authors] [NP who] [VP
are destined to be] [ADIP imortal]

Only a few simple examples have been included here. It caprobd that
UCSG Shallow Parse output is generally superior.

5 Conclusions:

In this paper we have described an architecture for paréiedipg called the UCSG
shallow parsing architecture. We have shown that UCSG ssbaléy combines
linguistic constraints expressed in the form of finite sg@mmars with statistical
rating using HMMs built from a POS-tagged corpus and a besdtdeaarch strategy
for global optimization. We have also shown that finite sgiemmars are good
enough to produce word groups. Finite State Grammars ayeteasnderstand and
visualize. Recognition with Finite State Grammars is cotapanally efficient. We
have shown that HMMs can be built from POS tagged corpora ande used for
rating and ranking the word groups. We have shown that beséfzhunk sequence)
can be selected using best first search strategies. Fimalrave also shown that
bootstrapping can improve HMMs and in turn parse generatiodules. From the
results, we can conclude that it would hopefully be posdibldevelop wide cov-
erage and robust partial parsing systems without the negquhfsed corpora which
are not easily available in many cases. The UCSG Shallowrfgg#schitecture is
also computationally efficient.

Chunkers are usually evaluated just for the percentage méaochunks they
produce, not for the correctness of the complete parse kcbaguence) for the
whole sentence. We have placed greater demands on ourseldage expect our
parser to produce optimal chunk sequence for the whole isegitéNo word can be
left out and there can be no overlaps either. Further, weymedll (or top few)
combinations and that too in hopefully a best first order.c8iwe are aiming at
chunks that correspond to answers to questions that carkbd atthe given sen-
tence, the very nature of the chunking task here is more seéereamd hence more
demanding. More over, we have used a fairly fine grained tagvgle more than
70 tags. The data we have started with, namely the BNC PO®daggpus, has



tagging errors, multiple tags are given in many cases, soardsaare not tagged,
and the tag set had to be extended. Given these factors,fioenpance we are able
to achieve both in terms of percentage of correct chunksandp parse and rank of
the fully correct parse is very encouraging. We are demangderfect match with
manually parsed sentences and in most cases we have ob#eavéae top parse
is nearly correct. For example, just could be just a NN1/NR6ran one of the
chunks - not a serious problem for many applications.

The UCSG parser developed for English is a wide coveragéoshphrsing sys-
tem. The system has been built and tested on very large datacegering a wide
variety of texts, giving us confidence that the system witfgen well on new, un-
seen texts. The system is general and not domain specifieydgan adapt and
fine tune for any specific domain as and when needed. We araleanthat wide
coverage and robust shallow parsing systems can be dedalspgg the UCSG ar-
chitecture for other languages of the world as well. We ptandntinue our work
on English parsing while we also start our work on Telugu.
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