
UCSG Shallow Parsing Architecture

Kavi Narayana Murthy, G. Bharadwaja Kumar
Department of Computer and Information Sciences

University of Hyderabad, India
email: knmuh@yahoo.com,gvijayabharadwaj@yahoo.com

Abstract
Current technologies in Information Retrieval, Information Extraction, Text

Categorization, Automatic Summarization, etc. are all quite superficial. They
treat orthographic units as words without regard to important linguistic phe-
nomena such as phrase, idiom or compound. Tokenization intosequences of
characters separated by spaces does not always give us linguistically mean-
ingful units. More importantly, most current systems use the so calledbag of
wordsmodel where texts are represented as (unordered) sets of words, with-
out regard to word order.Form follows functionand the syntactic structure
of a sentence has an important role in determining the meaning of a sentence.
Substantial improvements in text processing systems can beachieved only if
we include in depth analysis, at least at the level of syntax.This paper is about
our efforts in building wide coverage, robust syntactic parsing systems.

Recently, there is an increasing interest in integrating rule based methods
with statistical techniques for developing robust, wide coverage, high perfor-
mance parsing systems. In this paper, we have proposed a methodology for
building wide coverage shallow parsers by a judicious combination of linguis-
tic and statistical techniques without need for large amount of training corpus
to start with. We propose an architecture, called UCSG Shallow Parsing Ar-
chitecture. In the UCSG architecture, a Finite State Grammar is designed to
acceptall valid word groups and a separate statistical component, encoded
in HMMs (Hidden Markov Model), has been used to rate and rank the word
groups so produced. We then use a best first search strategy toproduce parse
outputs in best first order, without compromising on the ability to produce
all possible parses. We have proposed a bootstrapping strategy for improving
HMM parameters as well as the performance of the parser. These ideas have
been demonstrated by building a wide coverage partial parsing system for En-
glish.

Key Words:- Chunking, Shallow Parsing, Finite State Grammar, HMM,
Best First Search, UCSG Architecture



1 Introduction

Although a lot of work has gone into developing full syntactic parsers, high perfor-
mance, wide coverage syntactic parsing has remained a difficult challenge [1, 2]. In
recent times, there has been an increasing interest in wide coverage and robust but
partial or shallow parsing systems. Shallow parsing is the task of recovering only
a limited amount of syntactic information from natural language sentences. Often
shallow parsing is restricted to finding phrases in sentences, in which case it is also
called chunking. Steve Abney[3], has described chunking asfinding syntactically
related non-overlapping groups of words. In CoNLL chunking task[4], chunking
was defined asthe task of dividing a text into syntactically non-overlapping phrases.
The termphrasehas come to acquire a very special technical connotation in linguis-
tics and in order to avoid confusion, chunks are also referred to asword groups.

As an example, the sentence “He reckons the current account deficit will narrow
to only # 1.8 billion in September” could be analyzed as follows by a chunker [4]:

[NP He ] [VP reckons ] [NP the current account deficit ] [VP willnarrow ] [PP
to ] [NP only # 1.8 billion ] [PP in ] [NP September ].

Note that prepositional phrases have not yet been built, letalone resolving am-
biguities in prepositional phrase attachment. Nor have thethematic roles been as-
signed to the chunks. Partial parsing systems do a bit more than chunking while
still not promising complete syntactic analysis.

Developing computational grammars is a challenging task, even if we restrict to
partial parsing. There are broadly two approaches for the development of grammars
- the linguistic approach which depends upon hand-crafted rules, and, the machine
learning approach where grammars are learned automatically from a parsed training
corpus. Developing hand-crafted grammar rules is a very slow, tedious and difficult
task, requiring substantial knowledge and skill on the partof the linguist. Automatic
learning of grammars requires, on the other hand, a large andrepresentative parsed
training corpus, which is rarely available. Perhaps only a good combination of lin-
guistic and statistical approaches can give us the best results with minimal effort.

In this paper, we propose an architecture for shallow parsing, which we call
UCSG Shallow Parsing Architecture. In the UCSG Shallow Parsing Architecture, a
Finite State Grammar is designed to acceptall valid word groups but not necessar-
ily the only those word groups that are appropriate in context for a givensentence.
Many additional word groups may also be recognized due to lexical ambiguities.
The focus in this phase is only on completeness. There is a second module consist-



ing of a set of Hidden Markov Models, which will rate and rank the word groups
so produced. Note that we are not pruning, we are only rating and ranking the word
groups produced. Then we use a best first search module to produce parse outputs in
best first order, without compromising on the ability to produce all possible parses.
The aim is to produce all possible parses but hopefully in thebest first order. A
wide coverage partial parsing system for English has been implemented and tested
on large scale data. The system has been implemented in Perl under Linux. All the
experiments have been carried out on a system having PentiumIV processor and 1
GB ram.

2 A brief survey of shallow parsing systems

Steve Abney [5] proposed finite state cascade models for the chunking task. Grefen-
stette [6] proposed methods to use finite state transducers for partial parsing. Parsing
with finite state transducers [7] was very popular in the early ninety’s. Marc Vilain
et al. [8] used rule based sequence processors for the chunking task. Herve Dejean
[9] used ALLiS (Architecture for Learning Linguistic Structure), which is a sym-
bolic machine learning system for the chunking task.

Miles Osborne [10] proposed maximum entropy based POS tagger for the chunk-
ing task. Veenstra and Bosch [11] used memory based learningfor chunking. Zhou
et al. [12] proposed error driven HMM based chunk tagger withcontext depen-
dent lexicon. Rob Koeling [13] applied maximum entropy models for chunking.
Christer Johansson [14] proposed context sensitive maximum likelihood approach
for chunking task. Tong Zhang et al. [15] proposed generalized winnow algorithm
for text chunking. Recently Fei Sha and Pereira [16] used conditional random fields
for noun phrase chunking and achieved good performance.

Molina and Pla [17] proposed shallow parsing with specialized HMMs. Carreras
et al. [18] used perceptrons for chunking task. Recently, Gondy et al. [19] proposed
a shallow parser based on closed-class words to capture relations in biomedical text.

Taku Kudoh et al. [20] proposed SVMs for chunking. This system performed
the best in CoNLL-2000 chunking task and achieved an F-measure of 93.48%. Van
Halteren [21] proposed Weighted probability distributionvoting algorithm (WPDV)
for chunking task. Tjong Kim Sang [22] proposed combinationof several memory
based learning systems for chunking task.

Most of the parsers described in literature have used eitheronly rule based tech-



niques or only machine learning techniques. Hand-craftingrules in the linguistic
approach can be very laborious and time consuming. Parsers tend to produce a large
number of possible parse outputs and in the absence of suitable rating and ranking
mechanisms, selecting the right parse can be very difficult.Statistical learning sys-
tems, on the other hand, require large and representative parsed corpora for training.

Recently, there is an increasing interest in integrating shallow parsers with deep
parsing. Berthold Crysmann et al. [23] reported an implemented system called
WHITEBOARD which integrates different shallow componentswith a HPSG based
deep parsing system. Ronald M. Kaplan et. al. proposed a hybrid architecture called
XLE [24] for combining finite state machines with LFG grammar. In XLE system,
first the surface forms are run through the FST morphology to produce the corre-
sponding stems and tags. Stems and tags each have entries in the LFG lexicon.
Sub-lexical phrase structure rules produce syntactic nodes covering these stems and
tags and standard grammar rules then build larger phrases.

Literature survey and detailed analyses show that:

• Even shallow or partial parsing of natural languages is quite challenging.

• Testing and evaluation of shallow parsers has been carried out only on lim-
ited amount of data (say, 2000 sentences from WSJ corpus) in most cases.
Performance on large scale real life data is not clear.

• Testing and evaluation of parsers is a difficult task. Parsing accuracy of
trained parsers is known to depend significantly on stylistic similarities be-
tween training corpus and test data. For example, Chris Huyck’s plink parser
[25] was trained on Wall Street Journal portion of the Penn Tree Bank (PTB)
and when it was tested on Penn Treebank and Susanne corpus, there was a
significant variation in parser performance. Daniel Gildea[26] studied varia-
tion of parser performance on different corpora and observed the same effect.

• Some of the most accurate parsers namely Collins and Charniak parsers use
lexical co-occurrence statistics in the parsing model. Daniel Gildea [26], in
his paper quoted that “lexical co-occurrence probabilities seem to be of no
benefit when attempting to generalize to a new corpus”.

• High performance has been achieved only under restricted conditions. For
example, in CoNLL 2000 chunking task[4] prepositions were not fully dis-
ambiguated, prepositional phrases not built and no attemptmade to resolve
ambiguities relating to attachment of prepositional phrases.



• In the literature, mostly, the performance of the shallow parsers is measured
in terms of individual chunk types produced rather than the correct chunk
sequence or parse for a whole sentence.

• A parser also needs to have good generalization capacity forother domains.
Current systems have not been shown to be good at this.

• Most systems have used either a linguistic approach or a machine learning
approach. There is a lot of scope for exploring combinationsof linguistic and
machine learning approaches in syntactic parsing.

• Given the richness of syntactic structure, large amounts ofhigh quality parsed
corpora are required for statistical approaches. The largest training corpora
available for English are hardly a few hundred thousand sentences. In many
languages of the world, hardly any parsed corpora are available. Further,
training corpora must be suitable for a given grammar or grammar formalism.
There are strong corpus effects.

• While labelled training data is difficult to build, large scale unlabelled train-
ing data (that is, plain or POS tagged text corpus) is readilyavailable or can
be easily developed. The challenge is to exploit this for developing wide
coverage grammars and parsing systems.

• While several grammars and parsing systems exist for English and other ma-
jor languages of the world, Indian languages are lagging farbehind. There
are hardly any substantial computational grammars for any of the Indian lan-
guages. Parsed corpora are also not available and hence machine learning
approaches cannot be applied right away.

3 UCSG Shallow Parsing Architecture

UCSG shallow parsing architecture is set within the UCSG full parsing framework
that was initiated in the early 1990’s at University of Hyderabad by Kavi Narayana
Murthy[27]. See figure 1 for UCSG full parsing framework. There are three mod-
ules in this architecture.



Figure 1: UCSG Full Parsing Framework

The L-module takes a sentence as input and identifies all possible word groups
(chunks) in a single linear scan of the sentence using a finitestate grammar in linear
time. For further work, we only look at the chunks, not the individual words. The
H-module uses a small number of context free grammar rules torecognize clauses,
identify inter-relationships between clauses and to some extent determine clause
boundaries. This is done by recognizing that every clause has a verb group and
clause types and clause boundaries are marked by certain markers called sentinels.
UCSG shows that a small number of simple and universal rules are sufficient. Para-
metric variations of the same grammar rules apply for different languages. Hav-
ing recognized the hierarchical structure of clauses in a sentence, UCSG proposes
a ’work from whole to part’ strategy to analyze the functional structure in the last
module named the F-module. This particular way of modularization has been shown
to be universal and computationally simple and efficient as well. See [27] for ore
details.

In this paper, the focus is only on chunking - identifying chunks or word groups,
handling ambiguities, and producing parses (chunk sequences) for given sentences.
This can be extended to include thematic role assignment andclause structure anal-
ysis leading towards a full parser.



Purely linguistic approaches have not proved practicable for developing wide
coverage grammars and purely statistical or machine learning approaches are also
impracticable in most cases due to the non-availability of large enough parsed train-
ing corpora. Only a judicious combination of the two approaches can perhaps led to
wide coverage grammars and robust parsing systems. UCSG shallow parsing archi-
tecture proposes one such solution [28]. Figure 2 shows the basic UCSG Shallow
Parsing Architecture.

Figure 2: UCSG Shallow Parsing Architecture

The input to the parsing system is one sentence, either plainor POS tagged.
Output is an ordered set of parses. The aim is to produce all possible parses in
ranked order hoping to get the best parse to the top. In this work, by parse we mean
a sequence of chunks. Chunks are sequences of words.

A chunk or a “word group” as we prefer to call it in UCSG, is “a structural unit,
a non-overlapping and non-recursive sequence of words, that can as a whole, play a



role in some predication [27]”. Note that word groups do not include clauses (rela-
tive clauses, for example) or whole sentences. Every word group has a head which
defines the type of the group. Word groups can be classified into verb groups, noun
groups, adjective groups and so on based on the essence of themeaning as indicated
by theheadof the word group. Thus word groups are similar tochunks[29, 30].
Our word groups are also very similar to thephrasesdefined in the work of Beata
Megyesi [31]. It may be noted that the termschunkandphrasehave been used
in substantially different connotations elsewhere in literature. The word groups we
produce in UCSG are hopefully closer to ideal, semanticallyoriented units of full
parsing, as can be seen from the examples given at the end.

In our UCSG syntax, the definition of a chunk is motivated by question-answering
perspective. Consider

Sentence: I am studying at University of Hyderabad.

UCSG outputs the following word groups

<ng>[<PNN><i>]</ng>
<vg>[<VBB><am> <VVG><studying>]</vg>
<ng>[<PRP><at> <NN1><university> <PRF><of>
<NP0><hyderabad>]</ng>

The word groups produced can thus be viewed in terms of answers to basic ques-
tions such as who, whom, where, when etc. For example, if you ask a question
“where are you studying”, the answer is “at University of Hyderabad”. Observe
that many chunking systems in the world today treat prepositions as chunks in their
own right. Some chunkers break ‘University of Hyderabad’ into two chunks. See
examples below:

Memory based shallow parser [32, 33] gives the following output:

[NP I/PRP NP] [VP am/VBP studying/VBG VP]

{PNP [Prep at/IN Prep] [NP University/NNP NP] PNP}

[Prep of/IN Prep]Hyderabad//VBD ./.

Note that the word Hyderabad is not part of any chunk.

CCG shallow parser [34] gives the following chunks:



[NP I] [VP am studying] [PP at] [PP of] [NP Hyderabad]

The word “University” is missing altogether.

Thus our word groups are a bit more semantically oriented andas such, more
suitable for deep parsing as also for various NLP applications. We have set for
ourselves a more challenging task and our results must be viewed keeping this in
mind.

3.1 Finite State Grammar-Parser

Only linear order, repetition and optional items are relevant for recognizing chunks
- there are no nested or recursive structures to consider. Finite state grammars ef-
ficiently capture linear precedence, repetition and optional occurrence of words in
word groups but not arbitrarily deep hierarchical nestingsor general dependencies
across constituents. Finite state machines are both necessary and sufficient for rec-
ognizing word groups [27]. It is also well known that finite state machines are com-
putationally efficient - linear time algorithms exist for recognizing word groups.
Finite state grammars are also conceptually simple and easyto develop and test.
It may be repeated that detailed analysis of the internal structure of word groups
(modifier-modified relationships, for example) is beyond the scope of the current
system.

The Finite State module accepts a sentence (either already POS tagged or tagged
with all possible categories using the dictionary) and produces an unordered set of
possible chunks taking into account all lexical ambiguities.

During linear structure analysis all potential groups in a given sentence are to be
recognized. Linear structure analysis takes care of lexical ambiguities and groups
may overlap one another. The following algorithm identifiesall potential word
groups in a given sentence in a single left-to-right scan. This algorithm works for
both deterministic and nondeterministic state transitiondiagrams. It simulates par-
allel processing. Instead of maintaining a single current state it maintains a cur-
rent stateset. Each word in the input sentence is considered only once and an
amount of time bounded by the size of the grammar is spent per word. Hence the
algorithm is linear in time complexity.



Pseudo Code for Linear Structure Analysis:

MAIN()
initial stateset := [ ]
for each of the initial statessi in the network do

initial stateset := union([(si,‘ ’)],initial stateset)
current stateset := initial stateset
step through the words in the given sentence and for each wordw

advance(currentstateset,w)

ADVANCE(currentstateset,w)
newstateset := [ ]
for each state (s,str) in currentstateset do

for each out going arc a do
if any of the categories of w matches the arc a

begin
newstateset := union( [(endstate(a),concat(str,w))]

,newstateset)
if terminal state(endstate(a)) then
begin

output(concat(str,w))
newstateset := union(newstateset,initial stateset)

end
end

current stateset := newstateset

3.2 HMMs for Rating and Ranking Chunks

The second module is a set of Hidden Markov Models (HMMs) usedfor rating and
ranking the word groups produced by the Finite State Grammar. The hope is to
get the best chunks near the top. This way, although we are notrestricting chunk
generation toonly the appropriate chunks in context, we can hope to get the right
chunks near the top and push down others.

Words are observation symbols and POS tags are states in our HMMs. Formally,
a HMM modelλ = (π, A, B) for a given chunk type can be described as follows:

Number of States (N) = number of relevant Categories



Number of Observation Symbols (M) = number of Words of relevant categories in
the language

The initial state probability

πi = P{q1 = i} (1)

where1 ≤ i ≤ N , q1 is a category (state) starting a particular word group type.

State transition probability

aij = P{qt+1 = j|qt = i} (2)

where1 ≤ i, j ≤ N and qt denotes the category at time t andqt+1 denotes the
category at time t+1.

Observation or emission probability

bj(k) = P{ot = vk|qt = j} (3)

where1 ≤ j ≤ N , 1 ≤ k ≤ M andvk denotes thekth word, andqt the current state.

While building HMMs, a manually checked and certified chunked corpus can
be used if available. In this case, HMM parameters can be estimated right away.
However, such labelled training data is rarely available. When no parsed corpus is
available, we can rely on a POS-tagged corpus. In the latter case, a bootstrapping
strategy is proposed to refine the HMM parameters later. See figure 3. We first pass
a large POS tagged corpus through the Finite State module andobtain all possible
chunks. Taking these chunks to be equiprobable, we estimatethe HMM parameters
by taking the ratios of frequency counts. One HMM is developed for each major
category of chunks, say, one for noun-groups, one for verb-groups, and so on. The
B matrix values are estimated from a dictionary that includes frequency counts for
each word in every possible category.

We simply estimate the probability of each chunk using the following equation
:

P (O, Q|λ) = πq1
bq1

(o1)aq1,q2
bq2

(o2)aq2,q3
· · · aqt−1,qt

bqt
(ot) (4)

whereq1 ,q2, · · ·, qt is a state sequence,o1 , o2,· · ·, ot is an observation sequence.
Note that no Viterbi search involved here and the state sequence is also known. Thus
even Forward/Backward algorithm is not required and ratingthe chunks is therefore



Figure 3: Initial Estimation of HMMs



computationally efficient.

The aim here is to assign the highest rank for the correct chunk and to push
down other chunks. Since a final parse is a sequence of chunks that covers the given
sentence with no overlaps or gaps, we evaluate the alternatives at each position in
the sentence in a left-to-right manner.

Here, we useMean Rank Scoreto evaluate the performance of the HMMs. Mean
Rank Score is the mean of the distribution of ranks of correctchunks produced for a
given training corpus. Ideally, all correct chunks would beat the top and hence the
score would be 1. The aim is to get a Mean Rank Score as close to 1as possible.

3.3 Parse Generation and Ranking

The third module is for identifying the best chunk sequence or global parse for a
given sentence. This module generates all possible parses,hopefully in best first
order. We can of course limit the number of parses generated if required but the
ability to produce all possible parses is fundamental to thearchitecture. Note that
we do not produces all possible parses first and then rate and rank them - the parse
generation process inherently incorporates best-first search.

Choosing the locally best chunks at each position in a given sentence does not
necessarily give us the best parse (chunk sequence) in all cases. The HMMs are
local to chunks and global information such as the probability of a chunk of a given
type starting a sentence or the probability of a chunk of a particular type occurring
next to a chunk of a given type are useful. These probabilities can be obtained from
a fairly small chunked corpus. We have used best first search algorithm to get the
best parse (chunk sequence) for a given sentence.

Best First Search Algorithm

In this section, we map our parse selection problem into a graph search problem
and show how best first search algorithm can be used to find the best first parse.

Words and chunks in a sentence are referred to in terms of the positions they
occupy in the sentence. Positions are marked between words,starting from zero to
the left of the first word. The very first word is between positions 0 and 1. A word
group containing the third and fourth words in the sentence can be referred asW2,4.



The following steps describe how we map a given sentence and word groups
present in the sentence into a graph.

• The positions in the sentence are treated as nodes of the resulting graph. If a
sentence containsN words then the graph containsN+1 nodes corresponding
to theN + 1 positions in the sentence.

• Word groupWi,j is represented as an edge form nodei to nodej.

• The probability of a word groupWi,j given by HMM module and the tran-
sition probability from previous word group type to currentword group type
are combined to estimate the cost of an arc between the nodesi andj.

• We always start from the initial node0. Length of the sentenceN is the goal
node.

Now our parse selection problem of a sentence containingN words becomes
the task of finding an optimal path from node0 to nodeN .

Pseudo Code for Best First Search Algorithm:

start node = 0
goal node = N #(length of the sentence)
cur best =< 0, 0, , , > # < pos, prob, chunktype, path, parse >

openset =∅
for i = 1 to k do

repeat
openset = addsuccessor (curbest, openset)
cur best = findbest (openset)

until (cur best.pos = goalnode)
openset = openset− cur best
print cur best

done
function addsuccessor(curbest, openset)
chunkset ={x|x∈ CHUNKS and x.from = curbest.pos}
foreach (chunkset) do

elem.pos = chunkset[i].to
elem.prob = curbest.prob + chunkset[i].prob +

P (cur best.chunktype, chunkset[i].type)
elem.chunktype = chunkset[i].type
elem.path = update (curbest.path, chunkset[i])



elem.parse = updateparse (curbest.parse, chunkset[i])
openset = openset∪ elem

done
openset = openset− cur best

In best first search, we can inspect all the currently-available nodes, and rank
them on the basis of our partial knowledge. Here high rank means that the node
looks most promising in relation to the goal. At each step, weselect the most
promising of the nodes we have generated so far. We then expand the chosen node
to generate it successors. If one of them is a solution, we canquit. If not, all those
new nodes are added to the set of nodes generated so far. Againthe most promising
node is selected and the process continues. In the worst case, the best first search
algorithm runs in exponential time because it expands many nodes at each level. In
big-O notation, this is stated asO(bm), where b is the branching factor (i.e., the av-
erage number of nodes added to the open list at each level), and m is the maximum
length of any path in the search space. Memory consumption isalso a big problem,
apart from time complexity. The number of nodes that are stored in memory rapidly
increases as the search moves deeper into the graph and expanding too many nodes
can cause the algorithm to run out of memory.

Beam search is a heuristic search algorithm that is an optimization over best-first
search. Like best-first search, it uses a heuristic functionto estimate the promise of
each node it examines. Beam search, however, only unfolds the first m most promis-
ing nodes at each depth, where m is a fixed number, the “beam width”. While beam
search is space-bounded as a function of m, it is neither optimal nor complete when
m is finite. As m increases, beam search approaches best-firstsearch in complexity.

Here we propose a modified beam search strategy. We do not restrict the beam
width to a fixed number, instead we put bounds on the probabilities of the alter-
natives available. If the next best available alternative is not promising enough in
relation to the promise of the best alternative, we prune. Itis of course possible to
incorporate a wide variety of other statistical and machinelearning techniques for
optimum chunk sequence selection. We would need a reasonable sized high quality
chunked corpus for training. We have also explored A* best first search strategy.
Linguistic constraints should be expected to play an important role in parse genera-
tion and ranking.

3.4 Bootstrapping

The HMM parameters can be refined through bootstrapping. Since we need to
work with large data sets running into many hundreds of thousands of sentences,



Baum-Welch parameter re-estimation would not be very practical. Instead, we can
use parsed outputs to re-build HMMs. It may be recalled that originally HMMs
were built from chunks obtained from the over-general finitestate parser taking all
chunks as equi-probable. By parsing a given sentence using the system and taking
the top few parses only as training data, we can re-build HMMsthat will hopefully
be better. We can also simply use the top-ranked chunks for re-building the HMMs.
This would reduce the proportion of invalid chunks in the training data and hence
hopefully result in better HMM parameters. In the next section, we shall see that
this idea works and we can improve HMM parameters and improveparser perfor-
mance as well.

These ideas and claims are substantiated with experimentalwork as detailed in
the next section.

4 Experiments and Results

4.1 Lexicon

Lexicon is the heart of any natural language parser. We have developed a lexicon
of 138,000 head words including frequency of occurrence foreach tag for each
word. The lexicon has been obtained from the British National Corpus(BNC) [35],
an English text corpus of about 100 Million words, after a considerable amount of
analysis and pre-processing. It may be noted that the BNC corpus is POS tagged
but not parsed. Closed class words have been manually checked. The lexicon has a
coverage of 98% on the BNC corpus itself, 86% on the Reuters News Corpus [36]
(about 180 Million words in size), 96.36% on the Susanne parsed corpus [37] and
95.27% on link parser dictionary.

4.2 Sentence Boundary Detection

We have developed a sentence segmentation module using BNC corpus as training
data. We have used features such as delimiter, prefix, suffix and after-word and
extracted patterns from BNC corpus. We have divided instances of features col-
lected into 20 different random sets where each set contains50000 samples. We
have tested these samples using decision tree algorithms including ID3 and J4.8 us-
ing WEKA. Each test set has been subjected to 10 fold cross validation. We have
obtained the F-measure for each random set. An average F-Measure of 98.70% has
been obtained, comparable to other published results. See [38] for more details.



4.3 Tag Set

We have studied various tag sets including BNC C5, BNC C7, Susanne and Penn
Tree Bank tag sets. Since our work is based on BNC 96 edition with C5 tag set, we
have made some extensions as and when required. We have totally 71 tags in the
extended tag set.

Examples of Tags Added:

There is no distinction between nominative, accusative andpossessive pronouns
in the C5 tag set. This distinction is very much required in eliminating many un-
grammatical sentences. We have introduced four tags for accusative pronoun(PNA),
nominative pronoun(PNN), both nominative and accusative pronoun(PNC) and pos-
sessive pronouns(PPS).

There is no distinction distinction between interrogativepronoun and relative
conjunction in C5 tag set. Hence, we have added one more tag “CJR” for relative
conjunctions.

We have introduced new tag for the pre-determiners called “DTP”.

We have distributed the frequencies for the newly introduced tags by manual
observation of some random samples either from our own manually parsed corpus
or the BNC corpus itself. For example, the word ‘which’ is tagged only as “DTQ”
in BNC corpus. According to UCSG grammar, it can be either of the three tags,
namely, relative conjunction, pronoun and determiner. We have taken examples
from manual parsed corpus and studied the distribution of tags in manual parsed
corpus. We found that 60% of the times the word ‘which’ is tagged as “CJR”,
25% of the times as “PNQ” and 15% of the times as “DTQ”. The frequencies are
distributed accordingly.

4.4 Manually Parsed Corpus Development

We have developed a manually parsed corpus of 4000 sentences, covering a wide
variety of sentence structures. 1000 sentences have been randomly selected from
BNC corpus, 1065 sentences from ‘Guide to Patterns and Usagein English’ (here-
inafter referred to as GPUE corpus) [39] and 1935 sentences from CoNLL-2000
test data. This corpus is thus very useful for evaluating thevarious modules of the
parsing architecture and also for bootstrapping.

This corpus was developed by parsing the sentences using theUCSG shallow



parser for English and then manually checking the top parse and making corrections
where required. We felt this was far easier than parsing the sentences entirely by
hand.

4.5 Preprocessing Steps: Tagging

In the preprocessing step, plain sentences are tagged usingthe dictionary. Here, we
have considered all possible tags in the dictionary for a given word. In case, the
word is not found in the dictionary we have used morphological rules to find its
tag. The most important aspects of inflectional morphology of English including
plurals for nouns, past tense, gerundial and participial forms of verbs and degrees
of comparison for adjectives are handled. Derived forms aredirectly found in the
dictionary.

The following are the most productive rules for generating inflectional forms in
English:

• plural forms of noun and -s form of lexical verbs

• Superlative forms of adjectives (e.g. oldest, hottest, gravest)

• Comparative forms of adjectives (e.g. better, older)

• -ing forms of lexical verbs (e.g. forgetting, living, returning)

• Past and Past participle forms of lexical verbs (e.g. lived,returned, whetted)

Finally, if the word is directly not found in the dictionary and the root of that
word from morphological analysis also not found in the dictionary, we have consid-
ered the word as proper noun and assigned NP0 tag for the word.

A POS tagger can be included.

4.6 Finite State Grammar

We have developed a nondeterministic finite state grammar for identifying English
word groups. The Finite State Machine has a total of 50 statesof which 24 are final
states. See [40] for further details.



4.6.1 Example

Sentence: The sun rises in the east.

Actual word groups in the given sentence

<ng><0-2><AT0><the>##<NN1><sun> <vg><2-3><VVZ><rises>
<ng><3-6><PRP><in>##<AT0><the>##<NN1><east>

The following word groups are produced by our FSM:

<ng><0-2><AT0><the>##<NN1><sun>
<ng><0-3><AT0><the>##<NN1><sun>##<NN2><rises>
<ng><0-6><AT0><the>##<NN1><sun>##<NN2><rises>##<PRP><in>
##<AT0><the>##<NP0><east>
<ng><0-6><AT0><the>##<NN1><sun>##<NN2><rises>##<PRP><in>
##<AT0><the>##<NN1><east>
<ng><1-2><NN1><sun>
<ng><1-3><NN1><sun>##<NN2><rises>
<ng><1-6><NN1><sun>##<NN2><rises>##<PRP><in>##<AT0><the>
##<NN1><east>
<ng><1-6><NN1><sun>##<NN2><rises>##<PRP><in>##<AT0><the>
##<NP0><east>
<vg><2-3><VVZ><rises>
<ng><2-3><NN2><rises>
<vg><2-4><VVZ><rises>##<AVP><in>
<ng><2-6><NN2><rises>##<PRP><in>##<AT0><the>##<NN1><east>
<ng><2-6><NN2><rises>##<PRP><in>##<AT0><the>##<NP0><east>
<part><3-4><AVP><in>
<ng><3-6><PRP><in>##<AT0><the>##<NN1><east>
<ng><3-6><PRP><in>##<AT0><the>##<NP0><east>
<ng><4-6><AT0><the>##<NN1><east>
<ng><4-6><AT0><the>##<NP0><east>
<ng><5-6><NN1><east>
<ng><5-6><NP0><east>

We have evaluated the performance of the FSM module on various corpora - Su-
sanne Parsed Corpus, CoNLL 2000 test data set and on our manually parsed corpus
of 4000 sentences. The evaluation criteria is Recall alone since the aim here is only
to include the correct chunks.

The Susanne corpus [37] is a manually parsed corpus containing about 130,000
words in 6891 sentences. Some preprocessing was necessary.Ambiguities with



apostrophes have been resolved. Spelling errors mentionedin the Susanne docu-
mentation have been corrected. Since the structure of the parse output in the Su-
sanne corpus differs somewhat from that of UCSG, suitable mapping schemes had
to be developed and validated [41]. Plain text sentences were extracted and given
as input to the UCSG shallow parser.

In Susanne Corpus, phrases are classified into eight types [37] namely, verb
phrase, noun phrase, adjective phrase, adverb phrase, prepositional phrase, deter-
miner phrase, numeral phrase, genitive phrase.

Results are given in table 1 for Noun, Verb, Adjective and Adverb groups.

Table 1: Performance of the Finite State Parser on Susanne Corpus

Word Group Type No. of Groups No. of Groups % Recall
in Test Data Recognized

Noun Group 47735 41016 85.92
Verb Group 17559 17179 97.83
Adjective Group 2619 1733 66.17
Adverb Group 5516 4701 85.22
Overall 73429 64629 88.02

Overall, 88.02% of phrases in the Susanne corpus have been correctly identified.
97.83% of all the verb groups could be correctly identified. Failures in the case of
verb groups are limited to complex cases such as “have never,or not for a long time,
had”.

We have done analysis of the word groups that are not covered by our FSM
grammar. The main reason for failures we found is that in Susanne corpus the defi-
nition of phrases are very much different from the chunks we are using here. Some
phrases in Susanne corpus are recursive in nature. We have given a few examples
of failures here.

The examples given below are the noun phrases in Susanne corpus, which in-
clude other phrases or clauses within the noun phrases themselves.

• < ng > of the little pink woman who chose to be called auntie

• < ng > the largest majority given a candidate in recent years

• < ng > in a society deeply fissured by antagonisms



The examples given below are the adjective phrases in Susanne corpus, which
include other phrases within the adjective phrases themselves.

• < ajg > comfortable about her child

• < ajg > as neat as i can

As another example of the kinds of differences, the word “today” is considered
as noun in UCSG dictionary, where is it is treated as adverb inSusanne corpus.

The CoNLL 2000 test data set consists section 20 of the Wall Street Journal
corpus (WSJ) and includes 47377 words and 23852 chunks. In the current evalua-
tion, LST chunks (list items) have been excluded. Also, in the UCSG framework,
there are no separate PPs - PPs are included in noun groups. Table 2 gives the
performance in the first set of experiments [28].

Table 2: Evaluation of Finite State Parser on CoNLL 2000 TestData Set

CoNLL Chunk Type UCSG Terms Chunks in Chunks % Recall
Test Data Recognized

NP ng 12422 10588 85.24
VP vg,infg,vgs 4658 3786 81.28
ADVP avg 866 698 80.60
ADJP ajg,ags 438 398 90.87
SBAR sub,rel 535 507 94.77
PRT part 106 105 99.06
CONJP sub 9 9 100.00
INTJ intg 2 1 50.00
Total 19036 16092 84.53

There are a few minor differences in the way chunks are definedin the CoNLL
2000 chunking task and UCSG. Punctuation marks are removed by a pre-processor
and handled separately elsewhere in UCSG. Currency symbolssuch as$ and# are
considered part of numbers in UCSG while they become separate words in CoNLL.
CoNLL splits chunks across the apostrophes in genitives as in Rockwell Interna-
tional Corporation’s tulsa unitwhile UCSG does not. To-infinitives as incontinue
to plummetare recognized separately in UCSG while they may form part ofa VP in
CoNLL. Also, in keeping the UCSG philosophy, PPs are not recognized separately
in UCSG, they are included in noun groups. In order to get a better feel for the true
performance of the UCSG shallow parser, the above differences were discounted
for and performance checked again. The results are given in Table 3. There is no



change in the performance for other groups. Overall, 18185 out of 19130 chunks
have been correctly identified, giving a Recall of 95.06%.

Table 3: Evaluation of the Finite State Parser on CoNLL Data Set after mapping

CoNLL Chunk Type UCSG Terms Chunks in Chunks Recall
Test Data Recognized (%)

NP,PP ng 12261 11605 94.65
VP vg 4283 4223 98.60
- infg 625 610 97.6
ADVP avg 866 710 82.56
ADJP ajg 438 414 94.52
SBAR sub 544 517 95.03
PRT part 106 105 99.06
INTJ intg 2 1 50

Table 4 gives the performance of the FSM module on the manually parsed cor-
pus. From the table 4, we can observe that very high recall (99.56%) is achieved on
manually parsed corpus.

Table 4: FSM Evaluation on Manually Parsed Corpus

Chunk type Symbol No of Chunks No. of Chunks Recall
in Corpus Found (%)

Noun ng 15648 15627 99.86
Verb vg 6827 6817 99.85
Adverb avg 908 836 92.07
Adjective ajg 869 863 99.31
Coordinate conjunction coord 460 457 99.35
Subordinate conjunctionsub 1048 1048 100
Relative conjunction rel 460 460 100
Particle part 31 31 100
To infinitive infg 955 948 99.27
Interjection intg 7 7 100
Adjective special ags 15 15 100
Verb special vgs 475 475 100
Total - 27703 27584 99.56

We have done analysis of the word groups that are not covered by our FSM
grammar. The main reason we found that in CoNLL corpus, some of the words



have tag differences. For example, the word “according to” is a single preposi-
tion in UCSG dictionary where as the words are tagged as separate prepositions in
CoNLL corpus. Multi-token adverbs such as ‘at last’, ‘no longer’ are not identi-
fied by our grammar as on date. There are also tag differences between CoNLL
and UCSG tag set. We have considered the word ‘today’ as noun in our dictionary
whereas in CoNLL it is considered as adverb.

The table 5 shows the number of extra phrases produced by the over generaliza-
tion of FSM grammar. In manually parsed corpus, there are 27703 correct chunks.

Table 5: Analysis of FSM Module - Test Data of 4000 sentences having 27703
phrases in Manually Parsed Corpus

Plain POS tagged
Number of phrases produced by FSM module 313306 136926
% of correct chunks recognized by FSM module99.56 99.96

We may conclude that our finite state grammar is very good in recognizing the
correct chunks in most cases. By design, the FSM also produces other possibili-
ties and the UCSG architectures provides a separate module for rating and ranking
the chunks produced by the FSM so that the best ones can be selected for further
processing.

4.7 Developing HMMs

HMMs were initially developed from 3.7 Million POS-tagged sentences taken from
the BNC corpus. Sentences with more than 40 words were excluded. Since we
use an extended C5 tag set, POS tags had to be mapped to the extended set where
necessary. HMM parameters are estimated from the chunks produced by the Finite
State grammar, taking all chunks to be equi-probable. Separate HMMs are built for
noun groups, verb groups, adjective groups, adverb groups,infinitive groups and
one HMM for all other chunk types.

The probability of a given chunkP (O, Q|λ) has been calculated using the equa-
tion

P (O, Q|λ) = πq1
bq1

(o1)aq1,q2
bq2

(o2)aq2,q3
· · · aqt−1,qt

bqt
(ot) (5)

whereq1 ,q2, · · ·, qt is a state sequence,o1 , o2,· · ·, ot is an observation sequence.

The chunks are ranked accordingly. It is interesting to observe the Recall and
Mean Rank Score within the top k ranks, where k is a given cutoff rank. Table 6



shows that there is a clear tendency for the correct chunks tobubble up close to the
top. For example, more than 95% of the correct chunks were found within the top
5 ranks. Nearly 99% of the correct chunks are within a rank of 10.

Table 6: Performance of the HMM Module on the Manually ParsedCorpus of 4000
sentences - Plain Sentences as Input

Plain Sentences as Input POS Tagged Sentences as Input
Cutoff Mean Rank Cumulative Recall Mean Rank Cumulative Recall

Score (%) Score (%)
1 1 43.06 1 62.74
2 1.38 69.50 1.28 86.97
3 1.67 84.72 1.43 95.64
4 1.85 91.69 1.50 98.31
5 1.96 95.13 1.54 99.25
6 2.04 96.91 1.55 99.61
7 2.08 97.80 1.56 99.72
8 2.12 98.39 1.56 99.79
9 2.14 98.70 1.57 99.81
10 2.16 98.93 1.57 99.82

4.7.1 Example

Sentence: The sun rises in the east.

The following word groups and their ranks given by HMM module

<ng><0-2><AT0><the>##<NN1><sun> <-10.8199668891226><1><4><1>

<ng><0-3><AT0><the>##<NN1><sun>##<NN2><rises>
<-22.645126557751><2><4><1>

<ng><0-6><AT0><the>##<NN1><sun>##<NN2><rises>##
<PRP><in>##<AT0><the>##<NN1><east> <-35.0961918977221><3><4><1>

<ng><0-6><AT0><the>##<NN1><sun>##<NN2><rises>##
<PRP><in>##<AT0><the>##<NP0><east> <-36.6074325860112><4><4><1>

<vg><2-3><VVZ><rises> <-10.3267169484799><1><5><2>

<ng><2-3><NN2><rises> <-11.7411565945832><2><5><2>

<vg><2-4><VVZ><rises>##<AVP><in> < -16.744490507491><3><5><2>



<ng><2-6><NN2><rises>##<PRP><in>##<AT0><the>## <NN1><east>
<-24.1922219345543><4><5><2>

<ng><2-6><NN2><rises>##<PRP><in>##<AT0><the>## <NP0><east>
<-25.7034626228434><5><5><2>

<part><3-4><AVP><in> <-5.39011993798651><1><3><3>

<ng><3-6><PRP><in>##<AT0><the>##<NN1><east>
<-13.3023793305427><2><3><3>

<ng><3-6><PRP><in>##<AT0><the>##<NP0><east>
<-14.8136200188319><3><3><3>

<ng><4-6><AT0><the>##<NN1><east> <-10.6864467975293><1><2><4>

<ng><4-6><AT0><the>##<NP0><east> <-12.1976874858185><2><2><4>

Each entry includes the chunk type, the starting and ending positions, the chunk
itself with the POS tags of all the words, log probability given by HMM, rank,
number of items in the set, and the serial number of the branching points. It may be
noted that the correct chunks have been ranked at 1, 1 and 2 respectively.

We have also done some experiments to see the effect of the size of training data
used to build HMMs on HMM performance. We have found that as weuse more
and more training data, the HMM performance is improving significantly. Since we
are dealing with very large data sets, even a change in the second decimal place is
very significant. The results are shown in table 7.

Table 7: Effect of the size of training data on HMM performance

Size of the data Mean Rank
(No. of sentences)

0.1Million 2.29
1 Million 2.27

3.7 Million 2.26

4.8 Parse Generation and Ranking

The parse generation module has been evaluated on the manually parsed corpus
in terms of rank of the fully correct parse and also in terms ofpercentage of cor-
rect chunks in the top parse. Plain sentences and POS tagged sentences have been
considered separately for input. The results are summarized in table 8. Here, we
have restricted the parsing time taken by the best first search algorithm to 3 epoch



seconds for each sentence because the time and space complexity increases expo-
nentially as branching factor (b) and length of the sentence(n) increases.

Table 8: Performance of the Best First Search Module - Test Data of 4000 Sentences

Rank
No. of correct Parses

(Plain Sentences) (POS tagged Sentences)
1 1130 1774
2 351 487
3 185 194
4 85 137
5 70 129

% of Correct parses 45.52 68.02
in top 5

% of Correct chunks 78.70 78.42
in top parse
Total Recall 54.67 86.45

Time taken to parse 1h:55m:33sec 0h:31m:49sec

From the table 8, we can see that when we restrict best first search module to
give best five parses and time limit to 3 epoch seconds, we have45.52% correct
parses within top 5 for plain sentences and 68.02% of correctparses within top 5
for POS tagged sentences. The total number of sentences parsed by the best first
search module is only 54.67% for plain sentences and 86.45% for the POS tagged
sentences within the stipulated time. It must be noted that since the finite state
grammar is recognizing correct chunks with a very high recall and since the HMM
modules are used only for ranking and no pruning is done, correct parses will surely
be generated in most cases provided we have no time limits.

We have analyzed the complexity involved in exhaustive search to produce all
the parses for a given sentence. We have summarized the results in table 9. We can
see that the total number of parses for each sentence increases exponentially with
the length of the sentence and also branching factor. The results have also shown
that POS tagging greatly helps in parsing by reducing the complexity.



Table 9: Analysis of Complexity - Plain Sentences

Corpus Average Sentence Length
Average No. of Parses

Plain Sentences POS Tagged Sentences
GPUE 7.02 381 5
BNC 15.78 12,428,029 401

CoNLL 20.06 786,473,522,192 81,794

It may be noted that the performance of the parser in terms of its ability to
produce the correct parse is limited only by the Finite StateGrammar and the dic-
tionary, since the other modules do not resort to any pruning. However, it is con-
ceivable that in practical usage, we may impose a cutoff and attempt to produce
only the top k parses. In this latter case, the percentage of cases where the fully
correct parse is included could also be observed.

4.8.1 Example

Sentence: The sun rises in the east.

The following parses are the ranked order given by BFS moduleif we use dictionary
tags

<ng>[<AT0><the>##<NN1><sun>##<NN2><rises>##<PRP><in>##<AT0><the>##
<NN1><east>]</ng> -- -35.2345922674581

<ng>[<AT0><the>##<NN1><sun>]</ng> <vg>[<VVZ><rises>]</vg>
<ng>[<PRP><in>##<AT0><the>##<NN1><east>]</ng> --
-35.9226802717702

<ng>[<AT0><the>##<NN1><sun>]</ng>
<ng>[<NN2><rises>##<PRP><in>##<AT0><the>##<NN1><east>]</ng> --
-36.504440120609

<ng>[<AT0><the>##<NN1><sun>##<NN2><rises>##<PRP><in>##<AT0><the>##
<NP0><east>]</ng> -- -36.7458329557472

<ng>[<AT0><the>##<NN1><sun>]</ng> <vg>[<VVZ><rises>]</vg>
<ng>[<PRP><in>##<AT0><the>##<NP0><east>]</ng> --
-37.4339209600594

<ng>[<AT0><the>##<NN1><sun>##<NN2><rises>]</ng>
<ng>[<PRP><in>##<AT0><the>##<NN1><east>]</ng> --
-37.4397571852259

<ng>[<AT0><the>##<NN1><sun>]</ng>



<ng>[<NN2><rises>##<PRP><in>##<AT0><the>##<NP0><east>]</ng> --
-38.0156808088982

<ng>[<AT0><the>##<NN1><sun>]</ng> <ng>[<NN2><rises>]</ng>
<ng>[<PRP><in>##<AT0><the>##<NN1><east>]</ng> --
-38.7096050383768

<ng>[<AT0><the>##<NN1><sun>##<NN2><rises>]</ng>
<ng>[<PRP><in>##<AT0><the>##<NP0><east>]</ng> --
-38.950997873515

<ng>[<AT0><the>##<NN1><sun>]</ng> <vg>[<VVZ><rises>##<AVP><in>]</vg>
<ng>[<AT0><the>##<NN1><east>]</ng> -- -39.724521297768

<ng>[<AT0><the>##<NN1><sun>]</ng> <ng>[<NN2><rises>]</ng>
<ng>[<PRP><in>##<AT0><the>##<NP0><east>]</ng> --
-40.220845726666

<ng>[<AT0><the>##<NN1><sun>]</ng> <vg>[<VVZ><rises>##<AVP><in>]</vg>
<ng>[<AT0><the>##<NP0><east>]</ng> -- -41.2357619860571

<ng>[<AT0><the>##<NN1><sun>##<NN2><rises>]</ng>
<part>[<AVP><in>]</part> <ng>[<AT0><the>##<NN1><east>]</ng> --
-46.222079476789

<ng>[<AT0><the>##<NN1><sun>]</ng> <ng>[<NN2><rises>]</ng>
<part>[<AVP><in>]</part> <ng>[<AT0><the>##<NN1><east>]</ng> --
-47.4919273299399

<ng>[<AT0><the>##<NN1><sun>##<NN2><rises>]</ng>
<part>[<AVP><in>]</part> <ng>[<AT0><the>##<NP0><east>]</ng> --
-47.7333201650782

<ng>[<AT0><the>##<NN1><sun>]</ng> <ng>[<NN2><rises>]</ng>
<part>[<AVP><in>]</part> <ng>[<AT0><the>##<NP0><east>]</ng> --
-49.0031680182291

<ng>[<AT0><the>##<NN1><sun>]</ng> <vg>[<VVZ><rises>]</vg>
<part>[<AVP><in>]</part> <ng>[<AT0><the>##<NN1><east>]</ng> --
-62.3971218959318

<ng>[<AT0><the>##<NN1><sun>]</ng> <vg>[<VVZ><rises>]</vg>
<part>[<AVP><in>]</part> <ng>[<AT0><the>##<NP0><east>]</ng> --
-63.908362584221

It may be observed that there are 18 parses and the fully correct parse is in rank
two.

We have also implemented a modified beam search algorithm to improve the



parser efficiency in terms of time and space. Here, we have kept a threshold on
the probability so that the word groups which are having probability less than the
threshold can be pruned. In this way, we can reduce the numberof combinations
the parser has to explore and also save a good deal of memory. But this may cause
pruning of some of correct parses. If we do not want to loose the correct parse,
we have to increase the threshold accordingly. As the threshold increases, the com-
plexity approaches that of the best first search. The resultsin table 10 have been
obtained for a beam threshold of 1.

Table 10: Performance of the modified Beam Search - Test Data of 4000 Sentences

Rank
No. of correct Parses
Plain POS tagged

1 1262 1796
2 259 240
3 67 36
4 35 22
5 9 4

% of Correct parses 40.8 52.45
in top 5

% of Correct chunks 67.98 74.31
in top parse
Total Recall 100.00 99.87
Time taken 0h:15m:31sec 0h:0m:18sec

to parse

We have also studied effect of increase in threshold on parsegeneration. As we
increase threshold, the performance approaches that of thebest first search, but the
time taken to parse will also increase. The results are shownin table 11.



Table 11: Performance of the modified Beam Search with increasing threshold -
Test Data of 4000 Sentences

Rank Threshold 1 Threshold 3
1 1796 1796
2 240 497
3 36 200
4 22 142
5 4 119

% of Correct parses 52.45 68.85
in top 5

% of Correct chunks 74.31 74.31
in top parse
Time taken 0h:0m:18sec 6h:07m:20sec

to parse

We have also studied the percentage correct tags assigned tothe words in the top
parse of modified beam search module. We have observed that 96.01% of the words
are assigned correct POS tags in the top parse. This shows that most of the times the
top parse given by the parse generation module is almost correct in terms of POS
tags and may only have problems with chunk boundary detection. The results are
shown in table 12.

Table 12: Evaluation of the POS tags in the top parse of parse generation module
(modified beam search)

Number of words 62268
Number of words assigned Correct POS tags:59784

% of correct POS tags 96.01

It may be observed that the only kind of linguistic constraints we have used so
far is the structure of chunks as captured by the Finite StateGrammar. It is in fact
interesting to see fully correct parse (that is, chunk sequence) being produced by
the system in many cases before applying any sentence level linguistic constraints
at all. We have not included a grammar of clause structure, hierarchical structure
of clauses and phrases in sentences, or functional structure constraints such as sub-
categorization and selectional restrictions or even simple agreement rules. Further
improvements to the parser performance will critically depend on judicious appli-
cation of relevant linguistic constraints within the overall architecture.



Also, more work is needed to assign thematic roles to the chunk sequences
produced by the parser.

4.9 Bootstrapping

We hypothesize that the HMM parameters can be refined throughbootstrapping.
Initial HMMs were developed from chunks produced by the over-general Finite
State Grammar, taking all chunks to be equi-probable. Once the HMMs have been
built, we can use the same HMMs to rate and rank the chunks and further produce
parses using best first search. From the results obtained, itis clear that the top
ranked chunks and chunks from the top ranked parses will giveus better data for
re-building HMMs. The new data sets so generated contain a higher percentage of
correct chunks. In other words, noise is reduced. However, the size of the data set
also comes down as shown in table 13.

Table 13: Bootstrapping: Data Set Size

HMM development Phase No. of No. of
Sentences Chunks

Initial HMM building with FSM Output 3770917 122748054
Bootstrapping with HMM Top Ranked Chunks2008877 22368823
Bootstrapping with Best first search Top Parse1804827 11061598

To prove the bootstrapping hypothesis, we have carried out several experiments.
Plain text sentences from BNC corpus, 5 to 20 words in length,have been used.
All possible chunks are obtained using the Finite State State Grammar-Parser and
HMMs built from these chunks. In one experiment, only the chunks rated highest by
these very HMMs are taken as training data for bootstrapping. In a second experi-
ment, best first search is also carried out and chunks from thetop ranked parse alone
are taken for bootstrapping. In a third experiment, data from these two sources have
been combined. Best results were obtained when the chunks from the top parse
alone were used for bootstrapping. Table 14 shows the effectof bootstrapping on
HMM module.



Table 14: Effect of Bootstrapping after iteration-1: on 4000 sentences from Manu-
ally Parsed Corpus containing a total of 27703 chunks

Initial Iteration-1 Iteration-2
Cut- No. of Recall Mean No. of Recall Mean No. of Recall Mean
-off Chunks Rank Chunks Rank Chunks Rank

1 11929 43.06 1.0 12611 45.52 1.0 13090 47.25 1.0
2 19254 69.50 1.38 19787 71.43 1.36 20170 72.81 1.35
3 23470 84.72 1.67 23609 85.22 1.63 23811 85.95 1.60
4 25402 91.69 1.85 25418 91.75 1.80 25541 92.20 1.77
5 26356 95.13 1.96 26303 94.94 1.90 26401 95.30 1.87
6 26848 96.91 2.04 26805 96.75 1.98 26863 96.97 1.94
7 27096 97.80 2.08 27078 97.74 2.03 27108 97.85 1.99
8 27257 98.39 2.12 27226 98.28 2.06 27249 98.36 2.02
9 27344 98.70 2.14 27326 98.63 2.09 27336 98.68 2.04
10 27406 98.93 2.16 27393 98.88 2.11 27407 98.93 2.06

It may be observed that the percentage of correct chunks is increasing in the top
4 positions and decreasing thereafter, clearly showing that bootstrapping has helped
to rate and rank chunks better.

There is also some improvement in the final parse when the HMMsobtained
through bootstrapping are used. See table 15.

Table 15: Effect of Bootstrapping on Parse Generation - (Best First Search - Epoch
Time limit 3)

Rank
No. of correct Parses

Plain Sentences POS Tagged Sentences
Initial Iter-1 Iter-2 Initial Iter-1 Iter-2

1 1130 1172 1210 1774 2113 2193
2 351 308 352 487 470 495
3 185 152 157 194 186 164
4 85 82 83 137 132 129
5 70 72 68 129 89 91

% of Correct parses 45.52 44.65 46.75 68.02 74.75 76.80
in top 5

% of Correct chunks 78.70 83.17 83.92 78.42 87.51 88.26
in top parse



4.9.1 Example

Sentence: The sun rises in the east.

The following are the top 5 parses in ranked order given by BFSmodule after boot-
strapping if we use dictionary tags

<ng>[<AT0><the>##<NN1><sun>]</ng> <vg>[<VVZ><rises>]</vg>
<ng>[<PRP><in>##<AT0><the>##<NP0><east>]</ng> --
-37.1886283215909

<ng>[<AT0><the>##<NN1><sun>]</ng> <vg>[<VVZ><rises>]</vg>
<ng>[<PRP><in>##<AT0><the>##<NN1><east>]</ng> --
-38.8822563306516

<ng>[<AT0><the>##<NN1><sun>##<NN2><rises>]</ng>
<ng>[<PRP><in>##<AT0><the>##<NP0><east>]</ng> --
-39.357919583567

<ng>[<AT0><the>##<NN1><sun>##<NN2><rises>]</ng>
<ng>[<PRP><in>##<AT0><the>##<NN1><east>]</ng> --
-41.0515475926276

<ng>[<AT0><the>##<NN1><sun>]</ng> <ng>[<NN2><rises>]</ng>
<ng>[<PRP><in>##<AT0><the>##<NP0><east>]</ng> --
-41.7994535067038

It may be observed that the correct parse is still in second position but the top
parse is far better.

In the table 16, we have shown the effect of bootstrapping on modified beam
search algorithm results. Interestingly, bootstrapping also improved the perfor-
mance of beam search. This is due to the fact that the distribution of probabilities
among the phrases has improved with bootstrapping.



Table 16: Effect of Bootstrapping on Parse Generation - modified Beam Search
with threshold 1

Rank
No. of correct Parses

Plain Sentences POS Tagged Sentences
Initial Iteration-2 Initial Iteration-2

1 1262 1386 1796 2267
2 259 259 240 188
3 67 57 36 17
4 35 33 22 13
5 9 14 4 6

% of Correct parses 40.08 43.72 52.45 62.27
in top 5

% of Correct chunks 67.98 76.84 74.31 86.32
in top parse

The performance figures given above need to interpreted withcare. We have
seen that the percentage correct tags assigned to the words in the top parse is over
96%. This shows that most of the times the top parse given by the parse generation
module is almost correct in terms of POS tags and may only haveminor problems
with chunk boundary detection. The very definition of chunksis much more de-
manding in UCSG - we expect prepositions to be combined with the appropriate
noun groups, we expect correct handling of adverb particleswhich may be ambigu-
ous with a preposition, etc. A quick check by manual observation shows that in
most cases the top parse is reasonably good if not 100% perfect. Also, the top parse
may be more or less adequate for applications such as IE. Morethorough examina-
tion of this aspect is planned and all that we wish to say now isthat one should not
be disheartened by the not-so-high performance figures depicted here.

4.10 Comparison with other Systems

1. Plain Sentence:

Concern for the environment has always topped our agenda.

Tagged Sentence:

<VVB_NN1><concern>##<PRN_PRP_CJS_AVP><for>##<AT0><the>##
<NN1><environment>##<VHZ><has>##<AV0><always>##<VVN_VVD><topped>
##<DPS><our>##<NN1><agenda>##

UCSG output:



The chunk types in UCSG shallow parsing system are: 1) ng: noun group, 2) vg:
verb group, 3) vgs: verb group special, 4) avg: adverb group,5) ajg: adjective
group, 6) ags: adjective group special, 7) coord: coordinate conjunction, 8) sub:
subordinate conjunction, 9) rel: relative conjunction, 10) part: particle group, 11)
infg: infinitive group, 12) intg: interjection group.

The top 5 parses from UCSG shallow parser in ranked order are given below. Top
parse is fully correct.

<ng>[<NN1><concern>##<PRP><for>##<AT0><the>##<NN1><environment>]</ng>
<vg>[<VHZ><has>##<AV0><always>##<VVN><topped>]</vg>
<ng>[<DPS><our>##<NN1><agenda>]</ng>

<ng>[<NN1><concern>]</ng>
<ng>[<PRP><for>##<AT0><the>##<NN1><environment>]</ng>
<vg>[<VHZ><has>##<AV0><always>##<VVN><topped>]</vg>
<ng>[<DPS><our>##<NN1><agenda>]</ng>

<ng>[<NN1><concern>##<PRP><for>##<AT0><the>##<NN1><environment>]</ng>
<vg>[<VHZ><has>]</vg> <ajg>[<AV0><always>##<VVN><topped>]</ajg>
<ng>[<DPS><our>##<NN1><agenda>]</ng>

<ng>[<NN1><concern>##<PRP><for>##<AT0><the>##<NN1><environment>]</ng>
<vg>[<VHZ><has>##<AV0><always>]</vg> <ajg>[<VVN><topped>]</ajg>
<ng>[<DPS><our>##<NN1><agenda>]</ng>

<ng>[<NN1><concern>##<PRP><for>##<AT0><the>##<NN1><environment>]</ng>
<vg>[<VHZ><has>]</vg> <avg>[<AV0><always>]</avg>
<vg>[<VVD><topped>]</vg> <ng>[<DPS><our>##<NN1><agenda>]</ng>

Memory Based Shallow Parser Output:

[NP concern/NN NP] {PNP [Prep for/IN Prep] [NP the/DT environment/NN
NP] PNP} [VP has/VBZ always/RB topped/VBN VP] [NP our/PRP agenda/NN
NP] ./.

By now it should be very clear as to why it is very important to combine prepo-
sitions with noun groups appropriately to get a clear reading of the given sentence.
UCSG output is generally far better than the output of other parsing systems.

Cognitive Computation Group Shallow Parser Output:

[NP concern] [PP for] [NP the environment] has [ADVP always] [VP
topped] [NP our agenda] .



UCSG requires that every word in the given sentence is included in the final
parse. Leaving out words like makes the parse output so much less useable.

2. Plain Sentence:

He is one of the authors who are destined to be immortal.

Tagged Sentence:

<PNN><he>##<VBZ><is>##<CRD_PNI><one>##<PRN_PRF_AVP><of>
##<AT0><the>##<NN2><authors>##<NP0_CJR_PNQ><who>##<VBB><are>##
<VVN><destined>##<PRN_TO0_PRP_AVP><to>##<VBB><be>##<AJ0><immortal>##

UCSG output:

The top 5 parses from UCSG shallow parser in ranked order are given below. Top
parse is fully correct. ’who’ is treated as a conjunction introducing a relative clause,
thereby facilitating extensions to a full parsing system. Compare with the outputs
of other parsers below.

<ng>[<PNN><he>]</ng> <vg>[<VBZ><is>]</vg>
<ng>[<CRD><one>##<PRF><of>##<AT0><the>##<NN2><authors>]</ng>
<rel>[<CJR><who>]</rel> <vg>[<VBB><are>##<VVN><destined>]</vg>
<infg>[<TO0><to>##<VBB><be>]</infg> <ajg>[<AJ0><immortal>]</ajg>

<ng>[<PNN><he>]</ng> <vg>[<VBZ><is>]</vg>
<ng>[<PNI><one>##<PRF><of>##<AT0><the>##<NN2><authors>]</ng>
<rel>[<CJR><who>]</rel> <vg>[<VBB><are>##<VVN><destined>]</vg>
<infg>[<TO0><to>##<VBB><be>]</infg> <ajg>[<AJ0><immortal>]</ajg>

<ng>[<PNN><he>]</ng> <vg>[<VBZ><is>]</vg> <ajg>[<CRD><one>]</ajg>
<ng>[<PRF><of>##<AT0><the>##<NN2><authors>]</ng>
<rel>[<CJR><who>]</rel> <vg>[<VBB><are>##<VVN><destined>]</vg>
<infg>[<TO0><to>##<VBB><be>]</infg> <ajg>[<AJ0><immortal>]</ajg>

<ng>[<PNN><he>]</ng> <vg>[<VBZ><is>]</vg> <ng>[<CRD><one>]</ng>
<ng>[<PRF><of>##<AT0><the>##<NN2><authors>]</ng>
<rel>[<CJR><who>]</rel> <vg>[<VBB><are>##<VVN><destined>]</vg>
<infg>[<TO0><to>##<VBB><be>]</infg> <ajg>[<AJ0><immortal>]</ajg>

<ng>[<PNN><he>]</ng> <vg>[<VBZ><is>]</vg>
<ng>[<CRD><one>##<PRF><of>##<AT0><the>##<NN2><authors>]</ng>
<ng>[<PNQ><who>]</ng> <vg>[<VBB><are>##<VVN><destined>]</vg>
<infg>[<TO0><to>##<VBB><be>]</infg> <ajg>[<AJ0><immortal>]</ajg>



Memory Based Shallow Parser Output:

[NP He/PRP NP] [VP is/VBZ VP] [NP one/CD NP] {PNP [Prep of/IN Prep]
[NP the/DT authors/NNS NP] PNP} [NP who/WP NP] [VP are/VBP
destined/VBN to/TO be/VB VP] [ADJP immortal//JJ ADJP] ./.

Cognitive Computation Group Shallow Parser Output:

[NP He] [VP is] [NP one] [PP of] [NP the authors] [NP who] [VP
are destined to be] [ADJP immortal] .

Only a few simple examples have been included here. It can observed that
UCSG Shallow Parse output is generally superior.

5 Conclusions:

In this paper we have described an architecture for partial parsing called the UCSG
shallow parsing architecture. We have shown that UCSG successfully combines
linguistic constraints expressed in the form of finite stategrammars with statistical
rating using HMMs built from a POS-tagged corpus and a best first search strategy
for global optimization. We have also shown that finite stategrammars are good
enough to produce word groups. Finite State Grammars are easy to understand and
visualize. Recognition with Finite State Grammars is computationally efficient. We
have shown that HMMs can be built from POS tagged corpora and can be used for
rating and ranking the word groups. We have shown that best parse(chunk sequence)
can be selected using best first search strategies. Finally,we have also shown that
bootstrapping can improve HMMs and in turn parse generationmodules. From the
results, we can conclude that it would hopefully be possibleto develop wide cov-
erage and robust partial parsing systems without the need for parsed corpora which
are not easily available in many cases. The UCSG Shallow Parsing Architecture is
also computationally efficient.

Chunkers are usually evaluated just for the percentage of correct chunks they
produce, not for the correctness of the complete parse (chunk sequence) for the
whole sentence. We have placed greater demands on ourselvesand we expect our
parser to produce optimal chunk sequence for the whole sentence. No word can be
left out and there can be no overlaps either. Further, we produce all (or top few)
combinations and that too in hopefully a best first order. Since we are aiming at
chunks that correspond to answers to questions that can be asked of the given sen-
tence, the very nature of the chunking task here is more semantic and hence more
demanding. More over, we have used a fairly fine grained tag set with more than
70 tags. The data we have started with, namely the BNC POS tagged corpus, has



tagging errors, multiple tags are given in many cases, some words are not tagged,
and the tag set had to be extended. Given these factors, the performance we are able
to achieve both in terms of percentage of correct chunks in the top parse and rank of
the fully correct parse is very encouraging. We are demanding perfect match with
manually parsed sentences and in most cases we have observedthat the top parse
is nearly correct. For example, just could be just a NN1/NP0 error in one of the
chunks - not a serious problem for many applications.

The UCSG parser developed for English is a wide coverage shallow parsing sys-
tem. The system has been built and tested on very large data sets, covering a wide
variety of texts, giving us confidence that the system will perform well on new, un-
seen texts. The system is general and not domain specific, butwe can adapt and
fine tune for any specific domain as and when needed. We are confident that wide
coverage and robust shallow parsing systems can be developed using the UCSG ar-
chitecture for other languages of the world as well. We plan to continue our work
on English parsing while we also start our work on Telugu.

References

[1] Doran, C., Egedi, D., Hockey, B.A., Srinivas, B., Zaidel, M.: XTAG system
– a wide coverage grammar for english. In: Proceedings of the15th. Inter-
national Conference on Computational Linguistics (COLING94). Volume II.,
Kyoto, Japan (1994) 922–928

[2] Li, X., Roth, D.: Exploring evidence for shallow parsing. In: Proceedings of
the Annual Conference on Computational Natural Language Learning. (2001)

[3] Abney, S.P.: Parsing by Chunks. Principle-based parsing: Computation and
psycholinguistics edn. Kluwer (1991)

[4] Tjong Kim Sang, E.F., Buchholz, S.: Introduction to the conll-2000 shared
task: Chunking. In Cardie, C., Daelemans, W., Nedellec, C.,Tjong Kim Sang,
E., eds.: Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal (2000)
127–132

[5] Abney, S.: Partial parsing via finite-state cascades. In: Workshop on Robust
Parsing, 8th European Summer School in Logic, Language and Information,
Prag (1996) 8–15

[6] Grefenstette, G.: Light parsing as finite state filtering. In: Workshop on
Extended finite state models of language, Budapest, Hungary(1996)



[7] Roche, E.: Parsing with finite state transducers. Finite–state language process-
ing edn. MIT Press (1997)

[8] Vilain, M., Day, D.: Phrase parsing with rule sequence processors: an ap-
plication to the shared conll task. In Cardie, C., Daelemans, W., Nedellec,
C., Tjong Kim Sang, E., eds.: Proc. of CoNLL-2000 and LLL-2000, Lisbon,
Portugal (2000) 160–162

[9] Dejean, H.: Learning rules and their exceptions. In: Journal of Machine
Learning Research, volume 2. (2002) 669–693

[10] Osborne, M.: Shallow parsing as part-of-speech tagging. In Cardie, C., Daele-
mans, W., Nedellec, C., Tjong Kim Sang, E., eds.: Proceedings of CoNLL-
2000 and LLL-2000, Lisbon, Portugal (2000) 145–147

[11] Veenstra, J., van den Bosch, A.: Single-classifier memory-based phrase
chunking. In Cardie, C., Daelemans, W., Nedellec, C., TjongKim Sang, E.,
eds.: Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal (2000)
157–159

[12] Zhou, G., Su, J., Tey, T.: Hybrid text chunking. In Cardie, C., Daelemans,
W., Nedellec, C., Tjong Kim Sang, E., eds.: Proceedings of CoNLL-2000 and
LLL-2000, Lisbon, Portugal (2000) 163–166

[13] Koeling, R.: Chunking with maximum entropy models. In Cardie, C., Daele-
mans, W., Nedellec, C., Tjong Kim Sang, E., eds.: Proceedings of CoNLL-
2000 and LLL-2000, Lisbon, Portugal (2000) 139–141

[14] Johansson, C.: A context sensitive maximum likelihoodapproach to chunk-
ing. In Cardie, C., Daelemans, W., Nedellec, C., Tjong Kim Sang, E., eds.:
Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal (2000) 136–
138

[15] Zhang, T., Damerau, F., Johnson, D.: Text chunking based on a generalization
of winnow. In: Journal of Machine Learning Research, volume2. (2002)
615–637

[16] Sha, F., Pereira, F.: Shallow parsing with conditionalrandom fields. Technical
Report CIS TR MS-CIS-02-35, University of Pennsylvania (2003)

[17] Molina, A., Pla, F.: Shallow parsing using specializedhmms. In: Journal of
Machine Learning Research, volume 2. (2002) 595–613



[18] Carreras, X., Marquez, L.: Phrase recognition by filtering and ranking with
perceptrons. In: Proceedings of the International Conference on Recent Ad-
vances in Natural Language Processing, RANLP-2003, Borovets, Bulgaria
(2003) 127–132

[19] Gondy, L., Hsinchun, C., Jesse, M.: A shallow parser based on closed-class
words to capture relations in biomedical text. In: Journal of Biomedical Infor-
matics 36. (2003) 145–158

[20] Kudoh, T., Matsumoto, Y.: Use of support vector learning for chunk iden-
tification. In Cardie, C., Daelemans, W., Nedellec, C., Tjong Kim Sang, E.,
eds.: Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal (2000)
142–144

[21] van Halteren, H.: Chunking with wpdv models. In Cardie,C., Daelemans,
W., Nedellec, C., Tjong Kim Sang, E., eds.: Proceedings of CoNLL-2000 and
LLL-2000, Lisbon, Portugal (2000) 154–156

[22] Erik F. Tjong Kim Sang: Memory-based shallow parsing. In: Journal of
Machine Learning Research, volume 2. (2002) 559–594

[23] Berthold Crysmann et al.: An integrated archictecturefor shallow and deep
processing systems. In: Proceedings of the 40th Annual Meeting of the As-
sociation for Computational Linguistics (ACL), University of Pennsylvania,
Philadelphia (2002)

[24] Kaplan, R.M., III, J.T.M., King, T.H., Crouch, R.: Integrating finite-state
technology with deep lfg grammars1. In: Proceedings of the Workshop on
Combining Shallow and Deep Processing for NLP(ESSLLI). (2004)

[25] Yong, K.K., Huyck, C.: Robust parsing using plink. In: Proceedings of the
1st International Conference on Vision, Information and Parallel Processing
for Industrial Automation (ROVISP),. (2003) 269–275

[26] Gildea, D.: Corpus variation and parser performance. In: Proceedings of
Conference on Empirical Methods in Natural Language. (2001)

[27] Murthy, K.N.: Universal Clause Structure Grammar. PhDThesis, University
of Hyderabad (1995)

[28] Kumar, G.B., Murthy, K.N.: Ucsg shallow parser. Proceedings of CICLING
2006, LNCS3878 (2006) 156–167

[29] Molina, A., Pla, F.: Shallow parsing using specializedhmms. In: Journal of
Machine Learning Research, volume 2. (2002) 595–613



[30] Sang, E.F.T.K., Buchholz, S.: Introduction to the CoNLL-2000 shared task:
Chunking. In: Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal
(2000) 127–132

[31] Megyesi, B.: Shallow parsing with pos taggers and linguistic features. In:
Journal of Machine Learning Research, volume 2. (2002) 639–668

[32] Daelemans, W., Zavrel, J., Berck, P., Gillis, S.: Memory-based shallow pars-
ing. In: Proceedings of CoNLL-99, Bergen, Norway (1999)

[33] Memory Based Shallow Parser. (http://ilk.uvt.nl/cgi-bin/
tstchunk/demo.pl)

[34] Cognitive Computation Group Shallow Parser. (http://l2r.cs.uiuc.
edu/∼cogcomp/eoh/index.html)

[35] Burnard, L.: The users reference guide for the British National Corpus. Ox-
ford University Computing Services, Oxford (2000)

[36] Rose, T., Stevenson, M., Whitehead, M.: The reuters corpus volume 1 - from
yesterday’s news to tomorrow’s language resources. In: Proceedings of the
Third International Conference on Language Resources and Evaluation, Las
Palmas de Gran Canaria (2002)

[37] Sampson, G.: English For The Computer. Clarendon Press(the scholarly
imprint of Oxford University Press) (1995)

[38] Htay, H.H., Kumar, G.B., Murthy, K.N.: Constructing english-myanmar par-
allel corpora. In: Proceedings of Fourth International Conference on Com-
puter Applications, Yangon,Myanmar (2006) 231–238

[39] Hornby, A.S.: Guide to Patterns and Usage in English. Oxford University
Press (1975)

[40] Kumar, G.B.: UCSG Shallow Parser: A Hybrid Architecture for a Wide Cov-
erage Natural Language Parsing System. PhD Thesis, University of Hyder-
abad (2007)

[41] Nagesh, K.: Towards a robust shallow parser. Masters thesis, Department of
Computer and Information Sciences, University of Hyderabad (2004)


