
A Network and Process Model for Morphological
Analysis/Generation1

K. Narayana Murthy,
Department of Computer and Information Sciences,

University of Hyderabad, Hyderabad, INDIA
email: knmcs@uohyd.ernet.in

ABSTRACT

In this paper we present morphology of Kannada, one of the
four major literary languages of the Dravidian family, through a
computational model of morphological analysis/generation which can
be called the 'network and process' model. Kannada is a diglossic
language - the formal or the literary variety differs
significantly from the spoken variety. Here we restrict ourselves
to the standard dialect of the literary variety.

Kannada is mainly an agglutinating language of the suffixing
type. A complete word form may consist of several suffixes joined
according to well defined rules of saMdhi. In order to completely
specify the morphological processes in a language such as Kannada,
we need to look at several things. We need to know 1) the various
affixes, 2) the relationships between the affixes and the
grammatical categories/features and hence the meaning, 3)
particular combinations of affixes that are permitted in the
language, and finally, 4) the saMdhi processes that take place
during affixation. In the particular model presented here, the
first three aspects are encoded into a monolithic representation
called the 'network' and the last aspect is handled by a set of
ordered 'processes' of saMdhi. Hence the name 'network and
process' model.

There are several advantages to this separation of issues
into the two modules. Firstly, a network is an ideal
representation to depict constraints on combinations and ordering
of affixes. It is also an economical representation since common
subparts can be collapsed. Secondly, the network itself can be
used bidirectionally and hence we can have a single representation
for both analysis and generation. Changes made to the network will
be reflected automatically and immediately in both the analyzer
and the generator. A network representation is conceptually as
well as computationally very simple and efficient. On the other

1 The work reported in this paper was supported in part by the Government of
Karnataka under a consultancy project entitled "Machine Aided Translation from
English to Kannada"

hand, the saMdhi processes are relatively more complex and they
are sensitive to the order in which the processes are carried out.
The variations across languages also seem to be more pronounced.
Exceptions and idiosyncrasies are all bundled up in these
processes. It is therefore a good strategy to separate out the
saMdhi processes from the rest of the issues.

In this paper we give examples of the networks and the saMdhi
processes for Kannada and show how these can be used for
morphological analysis and generation. We also describe in brief
the implemented system called MORPH. MORPH incorporates an
analyser as well as a generator. The generator can generate
specified word forms or an entire paradigm. This stands in sharp
contrast to other computational models of morphology where one
starts by listing out paradigms by hand. The system is menu based
and the menus are generated dynamically. Hence any changes made to
the network get reflected in the menus automatically. The
dictionary includes more than 10,000 Kannada roots. While the
internal representations are in Roman, user can give inputs and
see the outputs either in Roman or in Indian scripts through GIST.

Currently, MORPH is being applied for Machine Aided
Translation from English to Kannada. Experiments have also been
made with several other languages including Telugu, Tamil and
Bengali. MORPH seems to hold promise as a general tool suitable
for a variety of languages.

1. Introduction:

This paper deals with the morphology of Kannada, one of the
four major literary languages of the Dravidian family, spoken
mainly in the state of Karnataka, South India. We present a
particular computational model which we call the 'network and
process' model. We start with a description of the model, present
examples and then discuss the merits of the particular
computational model.

Kannada is a diglossic language - the formal or the literary
variety differs significantly from the spoken or the colloquial
variety. For example, the first person singular form of the verb
'tinnu' (eat) in the non-past tense is 'tinnutte:ne' in the
literary variety and 'tinnutti:ni' (which gets further simplified
to 'tiMti:ni') in the spoken variety. Here we restrict ourselves
to the literary variety.

Kannada has a very rich and complex range of regional, social
and stylistic variation. There are three major regional varieties

- the "Mysore" dialect, the "Mangalore" dialect, and the "Dharwar"
dialect (Upadhyaya, 1976). However, finer regional distinctions
are possible and Rajapurohit (1982) has given a more elaborate
analysis with at least 7 dialectal regions. In this paper we show
examples from the "Mysore" variety.

Kannada is mainly an agglutinating language of the suffixing
type. Nouns are marked for number and case and verbs are marked,
in most cases, for agreement with the subject in number, gender
and person. This makes Kannada a relatively free word order
language. In this paper we take examples from the inflectional
morphology of Kannada verbs and nouns. We restrict ourselves to
suffixation and exclude prefixation, external saMdhi and
compounds. An implemented system called 'MORPH' is also briefly
discussed. MORPH can be used both for analysis and generation.

2. The Network and Process Model:

We now present a computational model for morphological
analysis and generation, called the Network and Process model. In
this model, morphology is divided into two distinct but related
components respectively called the network and the process. The
network component includes three aspects:

1. the various affixes that take part in the morphological
processes in the language

2. the associations between the affixes and the grammatical
features (and hence meaning)

3. constraints on the selection of affixes in various combinations

The other major aspect of how exactly the affixes combine
with the roots/stems, is dealt with in a separate component called
the process component. As we shall see soon, this division into
the two components offers certain unique advantages over other
possible approaches.

2.1 The Network:

Consider the structure a finite verb in Kannada. In its
simplest form, a finite verb form includes the root, an aspect
suffix, a tense suffix and a gender-number-person suffix, taken in
that order. For example

ma:Du + 0 + utt + a:ne = ma:Dutta:ne
Root: (do) Aspect:0 Tense: non_past GNP: m,sl,p3 ((he) does)

It may be noted that the gender, number and person are all
encoded into a single atomic suffix. Further, while Kannada has
three persons, three genders and two numbers, not all combinations
have distinct suffixes. Thus the suffix 'a:re' indicates third
person masculine or feminine plural - it is partly neutral to
gender. Similarly, in first and second persons, there are no
gender distinctions. Also, the gender-number-person suffixes show
variations across the three tenses - there are three separate sets
of suffixes, one for each tense. For example, the n-sl-p3 suffix
is 'ide' in the past tense, 'ade' in the non-past, and 'udu' in
the future/habitual. Thus the selection of a particular gender-
number-person suffix is conditioned by the selection of the tense
suffix and vice versa. Likewise, there are constraints on the
selection of auxiliary verbs in the non-finite forms. For example,
aspectual auxiliaries like biDu (lit. leave), no:Du (lit. see),
koDu (lit. give) and ha:ku (lit. put) occur only after a past
verbal participle and other aspectual auxiliaries such as a:gu
(lit. become) and toDagu (lit. start) occur only in an infinitival
context. Of course, such variations are not idiosyncratic to
Kannada, they do exist in many other languages too. The network
component provides a simple and efficient scheme for incorporating
all such requirements. Figure 1 gives a sample of the network for
the inflectional morphology of Kannada verbs and nouns.

A network consists of a set of states interconnected by
labelled arcs. The states are given labels only for convenience of
reference. The states in figure 1 are represented by numbers. The
arc labels are the affixes. Each affix also carries the associated
grammatical feature bundles. There is a well defined start state
and one or more well defined terminal states. To generate a
complete word form from a given root, we start at the start state
and move through a sequence of states until we reach one of the
terminal states. At each state transition, we attach the affix on
the corresponding arc label. If the affix attachment is done
according to appropriate saMdhi rules as specified in the process
component, we get the complete word form. Some examples are given
below to illustrate this process of generation:

no:Du + 0 + utt + a:ne = no:Dutta:ne
Root: (see) Aspect:0 Tense: non-past GNP:m,sl,p3 ((he) sees)

tinnu + i + ha:ku + i
Root: (eat) past_verbal_part. aspectual aux. past_verbal_part.

 + iru + id + anu = tiMduha:kiddanu
 Aspect: Perf. Tense: past GNP:m,sl,p3 ((he) had eaten)

For analysis, we start from a terminal state and look for
suffixes that match the labels of arcs leading to those states. By
a series of affix stripping steps, we get to the root which can
then be checked against the lexicon. Computationally, it is much
more efficient to work from right to left for analysis since the
number of suffixes is much smaller than the number of roots. In
more technical terms, the branching factor is much smaller if we
work from right to left than the other way round. Further, unlike
some of the other models, we work directly at the level of affixes
and stems/roots, not at the level of individual letters. This adds
to the efficiency of our model.

Formally, the network component is an extension of the well
known concept of Finite Automata (Hopcroft J.E., Ullman J.D.,
1979, Roche E., Schabes Y. (Eds), 1997). The major extension is in
terms of the incorporation of a separate process component that
combines the affixes with the root/stem according rules of saMdhi
formation rather than simply concatenating the strings. The
network used here is a non-deterministic finite automaton. It is
well known that for every non-deterministic finite automaton,
there is an equivalent deterministic finite automaton (Hopcroft
J.E., Ullman J.D., 1979). Recognition/generation algorithms for
deterministic finite automata are of linear time complexity and
hence about the fastest ever possible.

The network component is itself inherently bi-directional and
can be used for both analysis and generation. Changes made to the
network are automatically and immediately reflected in both the
analyzer and the generator, saving the burden of having to modify
the two separately, each time checking for consistency.

Note that it is impossible to select, say, the past tense and
a GNP suffix from the non-past set. Selectional constraints are
naturally and elegantly incorporated in a network. Some languages
involve additional constraints based on such things as syllabic
pattern, consonant/vowel ending etc. It is possible to incorporate
such constraints into the network itself, so that affixes are
always selected appropriately. An arc can then be taken if and
only if the conditions specified therein, if any, are satisfied.

Networks are efficient in representation too. Common subparts
can be collapsed. Loops can also be represented easily. For
example, from state 10 in figure 1 we can go back to state 0. Thus
we can generate and analyze word forms such as

 (ma:Du + isu + i + koLLu + i + biDu + i + ho:gu + 0 + id + anu)
'ma:DisikoMDubiTTuho:danu'

Also, networks have simple visual representations, making it easy
for people to read and understand.

2.2 The Process:

Here we are concerned with the saMdhi processes that take
place between affixes and the root/stem. While in some languages
the rules of saMdhi may be fairly simple and straight forward,
there are languages where the saMdhi processes are quite involved.
Our model incorporates a general and powerful process component
and is thus suitable for all types of languages.

The most common saMdhi process in Kannada is the deletion
(lo:pa) of final vowel. If a vowel initial suffix combines with a
vowel final stem/root, the last vowel of the stem/root is deleted.
Thus, ma:Du + id => ma:Did.

It must be noted that Kannada has no consonant ending words.
Even in the case of loan word such as car, an enunciative vowel -u
is added to make it 'ka:ru'. A large number of Kannada words end
with -u. However, the final -u in many words is only an
enunciative vowel and is not real. Thus the root is 'ma:D' and it
is simply concatenated with 'id' to form 'ma:Did' - there is
really no lo:pa taking place. None the less traditionally the
citation forms in dictionary include the enunciative vowel and
hence a lo:pa saMdhi will have to be carried out in the process
component.

In some cases, a:gama saMdhi also occurs. For example, 'bare'
+ 'itu' => 'bareyitu'. Similarly, an -a ending human noun gets an
'n' inflectional increment: 'huDuga' + 'annu' => 'huDuganannu'.
The process component checks for such conditions and then applies
the appropriate saMdhi rules for analysis or generation as the
case may be.

For example, the dative case suffix in Kannada is 'ige' but
it has the following variations: Neuter nouns ending with -a take
'kke' and -e and -i ending words get 'ge'. Thus we get the dative
forms

mara => marakke
ta:yi => ta:yige
taMde => taMdege
mu:gu => mu:gige

huDuga => huDuganige

Note that although the suffix in question in an vowel initial
suffix, the final vowel in the root is not lost in the last
example because of the inflectional increment that gets in
between.

The process component also serves as a base for incorporating
all exceptions and idiosyncratic variations. This strategy of
capturing the variations inside the process component has the
advantage that the network needs to show only the default suffixes
- the rule is segregated from the exceptions. The network depicts
only the major rules and thus becomes simpler and more economical.
Keeping the basic linguistic requirements in mind, one has the
freedom to divide the work between the network and process
components as appropriate.

In the MORPH tool, this strategy of subsuming all the
variations within the process component is extensively used. In
Kannada, the suffix 'iru' (which is also the verb 'be') indicates
perfectual aspect. When combined with the past tense suffix 'id',
it becomes 'idd'. This single rule not only takes care of past
perfect forms but also serves in the derivation of the paradigm of
the verb 'iru' itself. Normally 'iru' is considered an irregular
verb (Sridhar, S.N., 1990) and it is suggested that the paradigm
be listed. 'iru' is peculiar in the sense that there is an
additional tense form: 'iddenu' in past, 'idde:ne' in non-past,
'irutte:ne' in future/habitual and 'iruvenu' also,
future/habitual. This apart, generation of past tense forms makes
use of the same rule: 'iru' + 'id' => 'idd' and so you get
'iddenu' etc. In Kannada maximum variations occur in the past
tense forms and here is where we have saved.

3. MORPH: A Morphological Analysis/Generation Tool:

MORPH is an implemented system for morphological analysis and
generation based on the network and process model. MORPH has been
used to develop an analyser cum generator for Kannada. A lexicon
with more than 10,000 entries has been developed. MORPH uses a
non-deterministic network and can generate multiple solutions
where required through backtracking. Thus the verb form 'ma:Di'
can indicate either the plural imperative form or the past verbal
participle of the root 'ma:Du'. MORPH internally uses Roman
notation but the input and output can be in Indian scripts - a
GIST to Roman interconversion tool is part of MORPH. MORPH can
generate a specified word form as also an entire paradigm. This
stands in sharp contrast to other tools where one starts by

listing the paradigms by hand. MORPH has been implemented in
PROLOG.

MORPH is currently being used as part an Machine Aided
Translation System for translating from English to Kannada for the
Government of Karnataka. MORPH's ability to do analysis as well as
generation comes in very handy in the post editing tool. For
example, using the post editing tool one can simply select the
word 'toMdarege' and substitute with 'kaSTakke'. The word
'toMdarege' is analysed for the root 'toMdare' and singular dative
inflection, 'toMdare' replaced with the user selected word 'kaSTa'
and its dative singular form 'kaSTakke' generated on the fly. The
Kannada MORPH system is currently giving 60 to 70% performance on
general texts. MORPH has also been tested for suitability for
several other languages such as Telugu, Tamil and Bengali. Tamil
MORPH is also giving 60 to 70% performance as on date.

4. Conclusions:

The division of labour between the network and the process
components seems to be justified on several counts. The network
component is declarative in nature. On the other hand, the
processes of making and breaking saMdhi are more procedural. The
order in which the various constraints are checked differs from
analysis to generation. While generating a word form from a given
root, we would know the grammatical and semantic features of the
root to start with. When we are analysing a complete word form,
these aspects can only be verified after an analysis is produced.
Hence the process component needs parallel but distinct procedures
for making and breaking saMdhi. On the other hand, the network
component is inherently bidirectional. Thus the network and
process model seems to hold promise as computational model for
morphological analysis and generation.

The implemented system MORPH has demonstrated these
advantages of the Network and Process model. While there are
several other models proposed which appear to be similar on the
surface, MORPH has some unique features that set it apart from the
others:

 MORPH has been shown to be computationally viable and highly
efficient

 provides for both analysis and generation
 can even generate complete paradigms
 provides automatic menus
 provides for input/output in Indian scripts

 segregates the declarative and procedural components, making it
easier to develop grammars

 can easily handle complex saMdhi rules
 can incorporate a variety of constraints and exceptions
 can be phonologically enabled
 is suitable for a wide variety of languages
 MORPH systems have already been built and tested for several

languages

More work is on to improve the Kannada MORPH system as also
to develop a universal visual interface for the linguist using
which morphological analysers and generators can be developed by
linguists themselves without having to write any computer programs
whatever.

References

1.Upadhyaya U.P., 1976, A Comparative Study of Kannada Dialects
(Bellary, Gulbarga, Kumta and Nanjangud Dialects), Prasaranga,
Mysore

2.Rajapurohit B.B., 1982, Accoustic Characteristics of Kannada,
Central Institute of Indian Languages, Mysore

3.Sridhar, S.N., 1990, Kannada, Routledge

4.Hopcroft J.E., Ullman J.D., 1979, Introduction to Automata
Theory, Languages, and Computation, Addison-Wesley

5.Roche E., Schabes Y. (Eds), 1997, Finite State Language
Processing, MIT Press

