
Issues of Document Engineering in the Indian Context

Atul Negi, Kavi Narayana Murthy

Department of Computer and Information Sciences,

University of Hyderabad, INDIA

email: {atulcs,knmcs}@uohyd.ernet.in

Abstract

In this paper1 we discuss the core issues relating
to document processing of Indian language doc-
uments. We emphasize the distinction between
the entities language, script, and font. Script
grammar, unique to Indian languages, is used to
define the concept of characters in India scripts.
Issues of encoding, processing, rendering and
recognition are presented in the context of script
grammars. A deep understanding of these con-
cepts facilitates good system architecture and
design of text processing systems, OCR systems,
web documents etc. We give an example of
an OCR system developed for Telugu, a major
Indian language. The OCR system is structured
with a core OCR engine which recognizes basic
shapes and a separate module that composes
script level syllables for a character encoding
standard such as ISCII or UNICODE.

Keywords: Script Grammar, OCR

1The research reported in this paper was supported

by the University Grants Commission under the research

project entitled “Language Engineering Research” under

the UPE scheme

1 Introduction

Document engineering in a multi-lingual en-
vironment is becoming increasingly important,
both due to internationalization and the need
for local language support in multi-lingual coun-
tries like India. Indian languages and scripts are
characterized by certain unique aspects, differing
significantly from other language families of the
world. These issues have not been very well un-
derstood in the document engineering discipline.
In this paper we sketch the relevant features of
Indian languages and scripts and show their im-
plications for document engineering. Text repre-
sentation and processing, structure of web doc-
uments and issues relating to Optical Charac-
ter Recognition (OCR) are taken up. Exam-
ples are included from the DRISHTI OCR sys-
tem developed by us for Telugu and other Indian
languages. However, the issues raised here are
generally applicable to all Indian languages and
scripts.

2 Indian Languages and Scripts

India is a country of one Billion people, about
one sixth of the whole world population. India
is also an ancient civilization, dating back



to at least four thousand years. Contrary to
common belief, there are as many as about
150 different languages spoken in India today.
These are not dialects - dialects add up to a
much larger number. Many of these 150 or
so languages have not yet been studied in any
great detail. Of these, 18 major languages have
been given constitutional recognition. These
major languages include the official languages
of the federal states of India and are among
the most widely spoken languages of the world.
These languages span four different language
families - the Indo-Aryan, the Dravidian, the
Tibeto-Burman and the Austro-Asiatic families.

The scope of this paper is restricted to the
major languages and in particular to Telugu,
a Dravidian language spoken mainly in the
southern state of Andhra Pradesh. Telugu is the
second largest spoken language in the country
and is also one of the most complex. Our focus
here will be on issues relating to the Telugu
script.

2.1 Indian Scripts

The difference between language and script is
sometimes missed out, especially when there is
a one to one correspondence between Languages
and Scripts. In fact language is speech and
writing is only an artifact. A language can
exist even without a script, there are languages
without script. There are people who ’know’
their language very well, are quite proficient
in the use of language, and yet do not know
reading or writing. All of us learned to speak
first and learned reading and writing only much
later. Learning to read and write requires
training and conscious effort. Language and

script are two different things.

It is also conceivable that a given language
is written in several different scripts. This is
indeed a fact as far as Indian languages are
concerned. Indian scripts have existed for, and
evolved over, thousands of years. There are
in fact many scripts which are in use today.
Being a vast country that has always encour-
aged plurality in every aspect of life, it is not
surprising that there are so many scripts [4].
More importantly, the correspondence between
languages and scripts is not a strict one to one.
A language may be written in many scripts
and a script may be used for writing several
languages. Thus Sanskrit is written in not only
the Devanagari script but also in almost all
other scripts. Devanagari script is also used for
Hindi, Marathi and Sindhi languages. Telugu is
mostly written in the Telugu script.

There is a tradition of mixing different lan-
guages and scripts in the same document. Many
government documents are required to include
English and Hindi and a third local language
may also be used. Currency notes are multi-
lingual. Sign boards are multi-lingual. There is a
tradition of mixing Sanskrit with local languages
and Sanskrit then gets written in the script used
for the local language. Mixing English with lo-
cal languages is also very common and English
words are often transcribed in local scripts. Thus
you may frequently encounter multi-lingual texts
written in a single script. Separating different
scripts in multi-script documents is an important
consideration in document engineering. How-
ever, identification of the script will not be suf-
ficient. It is not sufficient for a spell checker to
know that the document is in Devanagari script,
it needs to know if the language is Sanskrit,

2



Marathi or Hindi. Identifying the language from
small text samples is also an important problem
in document engineering [2].

3 Characters

3.1 What is a Character?

There are different systems of orthography
and their formalization in the form of scripts.
English and other European languages are
alphabetic in nature - a small set of alphabets
are used to compose words using a system of
spelling. One must learn to read and write the
alphabets as also a plethora of spelling rules.
The letters of the alphabets are the characters
used in writing the language. Chinese script,
on the other hand, is an ideographic script
- the script consists of picture elements that
signify some meaning. One must learn to read
and write the various graphical shapes and
their combinations and learn to relate them to
the meanings of words. The various graphical
elements used in the writing system form the
characters of the language.

Indian scripts follow an entirely different
scheme - the writing depicts, more or less in
a one to one fashion, the various sounds in
the languages. The appropriate unit of sound
representation chosen is the syllable. Thus
the word ’Telugu’ consists of three syllables
’te’, ’lu’ and ’gu’ and it is exactly these three
units that we write when we write the word
’Telugu’ in the Telugu script. Indian scripts
are syllabic in nature. Thus there is more or
less direct phonetic correspondence between the
spoken word and its written representation -
what we write is what we speak. There is no
need for rules of spelling at all. This is the most

significant merit of the syllabic writing system.

There are, however, some differences between
the spoken syllable and its written counterpart.
Spoken syllables can be of various types - V, CV,
CVC, CVCC, etc. where V represents an vowel
sound and C, a consonant sound. However, the
written units are always of the C*V kind - zero,
one or more consonant sounds followed by an
vowel sound. These units of writing are called
akshara’s. It must be noted, therefore, that the
correct terminology for the units of writing in
Indian scripts is akshara, not syllable, although
one finds the term syllable also in literature. In
such a case, the distinction between the spoken
and the written syllable must be clearly under-
stood. We will always use the term akshara for
the units of writing in this paper. A Character
in an Indian script is thus really an akshara.

3.2 How Many Characters?

Since there are no spelling rules and all spoken
sounds must be directly represented in the
orthography, the number of possible akshara’s
is naturally very large. In fact if we allow
an unlimited number of consonant sounds in
the C*V combination, the number of possible
akshara’s would become infinite. There is a
practical limit to the number of consonants in
consonant clusters and the largest consonant
cluster known is the 5 consonant cluster in
the Sanskrit word ’kaartsnya’ involving the
consonants ’r’, ’t’, ’s’, ’n’ and ’y’ in a single
akshara. It can be shown that if all possible C*V
combinations upto 5 consonants were allowed,
then the number of possible akshara’s would still
be extremely large - of the order of ten billion!
Clearly, not all combinations are possible. Only
about 20,000 aksharas are found in the text

3



corpora available in Indian languages. Further,
our studies on corpora have shown that about
5000 aksharas account for more than 99% of all
the words used in all the major Indian languages.

It is clearly not possible to represent or code
so many aksharas directly. Also, a representa-
tion scheme needs to be complete - every possible
akshara must be capable of being represented,
irrespective of whether it is frequently used or
not, irrespective of whether it occurs in a partic-
ular corpus or not. Fortunately, Indian scripts
have evolved a unique and ingenious method -
a script grammar, to achieve elegance, simplic-
ity and economy without compromising on com-
pleteness.

3.3 A Grammar for Scripts

Akshara’s, (or syllables) are composed of
consonants and vowels. A small Finite State
Machine is sufficient to recognize and generate
all valid aksharas and at the same time pro-
hibit ungrammatical combinations. Note that
the notion of grammatically valid and invalid
combinations does not exist in other systems
of writing. A word may be spelled correctly or
incorrectly in English. A word may be a valid
English word or it may not be. But there is
nothing that makes a spelling ungrammatical.
Ungrammatical combinations can never occur
in the language, not even in proper names or
newly coined words. A script level grammar is
unique to Indian languages.

All valid aksharas can be constructed from
a small set of less than 100 symbols using the
script grammar. There are about 40 consonants
and about 15 vowels. All aksharas are composed
from these basic units. Aksharas are the atomic

V D

N

H
H

1 2

7

4 5

6

3
V: Vowel
D Vowel Modifier
M: Vowel Matra
C: Consonant
H: Halant
N: Nukta

C

C

M
M

H

D

D

Fig 3: Grammar of Syllables

Figure 1: Script Grammar

units of writing and consonants and vowels are
thus sub-atomic units used to construct a gram-
mar for all valid combinations. The finite state
grammar shown below can generate exactly the
(infinite) set of valid aksharas:

The following points may be noted with
regard to this script grammar. In Indian scripts,
the written shapes of vowel sounds when they
occur in conjunction with consonants are vastly
different from the shapes used to represent
pure vowels. In keeping with this significant
property, this script grammar employs two sets
of symbols, one for pure vowels and the second,
called vowel maatras, for the vowel sounds
in conjunction with preceding consonants.
(Consonants may also show variations in shape
depending on whether they occur independently
or in conjunction with other consonants. The
choice is entirely conditioned by the occurrence
of a cluster and these variants are not depicted
explicitly in the above grammar.) By defini-
tion, vowels can be pronounced independently
whereas consonants can only be pronounced
along with a vowel sound. It is a well established
convention in Indian languages, therefore, that
consonants are assumed to have an implicit ’a’
vowel in them unless this vowel is removed by
an explicit symbol called ’halant’. A consonant
without an implicit vowel is called a pure
consonant. Thus consonant clusters are formed

4



Figure 2: Telugu Vowels

by combing pure consonants. When a consonant
combines with a vowel maatra, the implicit ’a’
vowel is replaced by the corresponding vowel.
(Another possible approach could be to view all
consonants as pure consonants by default and
add the ’a’ vowel just as any other vowel as
and when required.) Further, vowel modifiers,
which are neither pure vowels nor pure conso-
nants, are accommodated as final components
of aksharas. Lastly, the grammar allows not
only C*V syllables but also vowel-less segments,
which are obtained by a sequence of two halants.

Learning to read and write Indian scripts in-
volves recognizing the individual shapes for iso-
lated and conjunct consonants, vowels, vowel
maatras and vowel modifiers. Once these ba-
sic shapes are mastered, the script grammar dic-
tates the way aksharas are formed. There is no
need to memorize any spelling rules. The figures
below depict the basic shapes used in the Telugu
script:

4 Fonts and Glyphs

The graphical shapes of the aksharas in Indian
scripts are quite complex. Aksharas are of
variable width and the vowel maatras and
conjuncts embellish the base part on the top, on
the right side, left side or at the bottom. Text
in Indian scripts is not simply a linear sequence

Figure 3: Telugu Consonants

Figure 4: Telugu Vowel Maatras

5



Figure 5: Telugu Secondary Consonants

of more or less equal with and equal height
alphabets. This throws up many challenges in
the computer processing of Indian scripts and
good design calls for thorough understanding
and careful consideration of many issues.

We have seen that the number of characters
in Indian scripts is very large and therefore can-
not be listed or coded directly. The graphi-
cal shapes of the aksharas in Indian scripts are
quite complex and aksharas can only be com-
posed from smaller, simpler shapes. These el-
ementary shapes used for rendering are called
glyphs. Glyphs need to be designed for ease
of composition into aksharas. The units of the
script grammar are not the best choice for the
purpose. Indian language fonts therefore use sets
of glyphs that do not have one to one correspon-
dence with the script grammar elements. Several
symbols may be combined to form a single glyph
and a single symbol may actually be composed
of several glyphs:

Further, there may be several glyphs for the

Figure 6: Examples of Font-to-Character Map-
pings

same symbol and the choice of the appropriate
glyph would be based on the context. For
example, the Hemalatha font for Telugu using
several glyphs for the ’aa’ maatra, one for wide
consonants, one for narrow and tall consonants
and so on. Choice of the right glyph and ap-
propriate graphical placement and composition
are necessary aspects in the design of fonts
and rendering. The beauty of fonts lies in the
beauty of the glyphs. There are no glyph level
standards and the font designers are free to
choose the glyphs the way they wish. In fact
even the positioning of the glyphs in the font
table is also not standardized - Thus each font
is different.

A Font is a set of glyphs placed in a suitable
format. Glyphs may be defined as bitmaps or,
more often, as second or third degree splines.
Fonts for Indian languages ideally must also

6



specify the rules for choice of glyphs and for
glyph placement and composition. Further, the
rules for mapping from character encoding stan-
dards must be specified. With TTF fonts, widely
used in Indian languages, the mapping from
character encoding schemes is completely left un-
specified, leading to ad-hoc solutions by commer-
cial vendors of word processors and other soft-
ware. Unicode fonts attempt to overcome some
of these deficiencies but there is still a long way
to go [3].

5 Character Encoding Stan-

dards: ISCII and UNICODE

We have seen that Indian scripts are phonetic -
what we write is what we speak. Orthography
is actually a graphical rendering of sounds. In
English you write ’es, see, ech, o, o, el’ and
read it as ’school’. In Indian scripts, you can
directly write atomic units for the sounds ’skuu’,
and ’l’. The basic sounds (phonemes) used in
various Indian languages are almost the same -
there are very few variations from language to
language - sounds are universal. A ’ka’ sound is
a ’ka’ sound irrespective of the wide variations
in shape you will see in different scripts. There-
fore, if we encode the sounds rather than the
graphic shapes used in different scripts, we will
get a universal character encoding scheme that
captures the essential nature of these languages.
This is the essence of the ISCII (Indian Script
Code for Information Interchange), a standard
of the Bureau of Indian Standards. UNICODE,
as we shall see below, is only a minor variation
to the ISCII design.

The ISCII standard specifies the script gram-
mar and provides an 8 bit code for the vowels,

consonants, vowel modifiers and vowel maatras.
There are about 40 consonants and about 15
vowels and the total number of symbols to be
encoded is less than 128. So the second half
of the ASCII chart is used, keeping the first
half in tact. This permits a straight forward
mixing of English (Roman) and Indian scripts,
a regular phenomenon in the Indian context.
The ISCII codes are phonetic based and are
therefore the same for all languages. Thus
transliteration (change of script) is trivial. All
that you need to do is to note the language
and use an appropriate font for rendering -
the text itself does not change at all. Thus,
pure ISCII documents are script independent
representations and the same document can be
rendered in any chosen script.

UNICODE, in keeping with its philosophy of
encoding various languages separately, adapts
the ISCII system by adding an extra byte for
each code to specify the language. This permits
multi-lingual plain texts, something that is
not possible in ISCII. Plain texts cannot, by
definition, include attributes. Thus just one
attribute, the language attribute, is implicitly
encoded in UNICODE. This may not be a major
advantage as any way we will have to go for
attributed texts to handle any other attribute.
However, ISCII is not widely supported directly
by Operating Systems, Browsers etc. and UNI-
CODE will surely score in this regard. There
are still teething problems in the adaptation
of UNICODE for Indian languages and scripts [3]

7



6 Text Representation and

Processing

ISCII is not directly supported by Operating
Systems or Web Browsers. That is, ISCII
encoded documents cannot be directly viewed
- they need to be rendered in a suitable font.
There are no glyph level standards and thus
mapping from ISCII to a given font becomes
a critical step. Aksharas are composed of
more basic units at both the character encod-
ing level and the font encoding level but the
two schemes are completely different. Most
commercial software vendors have chosen to
directly encode documents in their proprietary
and non-standard fonts. Thus there is no com-
patibility between different software products.
Font encoded documents cannot be considered
as texts and no standard text processing can
be performed on such documents. This single
factor has contributed to a colossal waste of
time and effort in document engineering in India.

A variety of solutions have been proposed for
mapping character encoded documents into a
specified font. Plug-ins have been developed but
this is by its very nature an ad-hoc solution - a
plug-in is software and version specific. Context
Free Grammars have been used to obtain a
translation system on line with traditional
compilers. Most commercial software systems
use hard coded rules. Some have resorted
to near-exhaustive enumeration. None of the
systems in existence today are complete (that
is they properly handle all valid aksharas),
consistent, or computationally efficient. A
consistent and provably complete system based
on an Augmented Finite State Transducer is
being developed at the University of Hyderabad.

Switching to UNICODE will solve many of
these problems but there will still be some
issues wanting to be addressed properly. The
distinction between language, script and font is
not as clear as it should be in the UNICODE
world. For example, the script grammar is
an innate property of a script and it cannot
be ignored or indirectly addressed at the level
of fonts. A UNICODE encoded text is still
simply a sequence of codes and the notion of
an akshara s an atomic unit is not explicitly
evident. UNICODE based system are yet to
pick up in India for a variety of reasons. This is
not a small change for many who have still been
using font encoded documents. UNICODE fonts
are not freely available and OS and Browser
support is only slowly becoming available.

Given this scenario, avoidable multiplicity of
spellings, splitting of aksharas across line bound-
aries, incompatibility between systems and be-
tween fonts, poor or no support for even ba-
sic operations such as searching and sorting etc.
continue in word processors, web documents and
other such systems. Fundamentally sound de-
signs such as the AKSHARA system developed
at University of Hyderabad are expected to mit-
igate these problems in the near future.

7 DRISHTI: An OCR Engine

Here we describe briefly the architecture of an
OCR system for Telugu script called DRISHTI,
which highlights the concepts described earlier.
DRISHTI as a system was first described [5],
and subsequently improved [1]. Presently DR-
ISHTI handles good quality Telugu documents
with a single column of text scanned at 300 dpi.

8



As reported [1] it has a recognition accuracy
at the glyph level of about 97%. It has been
tested on several kinds of input ranging from
newspapers, popular novels to laser printed text.

As explained earlier, there can be a large num-
ber of aksharas (C*V combinations), which need
to be recognized. In DRISHTI this complexity of
training and recognition is brought down to just
a few hundred units, by identifying connected
components. Essentially the compositional
approach is used where connected components
from the binarized image are the units which
are recognized. This bypasses tricky issues of
attempting to segment maatras from the base
characters. Fortunately secondary consonants
in clusters are distinct connected components
in Telugu and they need not be dissected
from their main consonants like in Devana-
gari or Bangla scripts. This idea has also been
used by other approaches to Telugu OCR [8], [6].

Line, word and character separation are the
stages in isolation of the connected components
which are then fed to the recognition engine.
Telugu characters are mostly rounded and
devoid of straight strokes. Simple projection
profiles are not suitable for the complexity of
Telugu orthography. A smearing technique
using RLSA (Run-Length Smearing Algorithm)
[9] with both vertical and horizontal thresholds
estimated from the document are used. This
helps to form words and lines. Connected
components are then isolated from the words
found by smearing. The layout analysis yields
position information.

Recognition of connected components is done
using advanced template matching with fringe
distances. Templates of a standard size are

matched with input scaled to the template size
of 32x32 pixels. Fringe distance matches were
suitably improved by use of distance techniques
for binary template matching as described by
Tubbs [7].

The complete OCR algorithm is given below:

1. Read in an input binary image

2. Segment the image into lines and words

3. Extract the connected components from
each word

4. For each component

(a) Normalize size to match stored tem-
plates

(b) Compute fringe distance map

(c) Compute fringe distance from all tem-
plates

(d) Output template with smallest fringe
distance

(e) Convert template code to ISCII code

5. Store ISCII output in a file

Here we should note that the step 4(e) above
is not at all a trivial task. This step is perhaps
unique to the Indian OCR systems. We describe
the details of this process in the following sec-
tion.

8 From Recognition to Text

The OCR engine outputs codes corresponding
to connected components recognized. There as
as many codes as there are different connected
components. These codes need to be mapped

9



onto a character encoding standard such as ISCII
or UNICODE before it can be viewed and edited
as text. There are several factors that make this
text reconstruction process quite complex:

• The DRISHTI OCR engine recognizes con-
nected components, which do not neces-
sarily correspond to aksharas or the build-
ing blocks of aksharas - vowels, consonants,
vowel maatras etc. A connected component
may correspond to one building block or
fractions or multiples thereof.

• A code output by the core engine may actu-
ally stand for several different things. The
shapes of certain consonants are same when
used as base characters or as secondary con-
sonants in clusters. The codes output by the
OCR engine will be the same in both cases
but their character level representations will
be different - a preceding halant needs to be
inserted when the consonant is a secondary
consonant in a cluster.

• In some cases, the presence of a connected
component implies a change in the character
recognized without it.

• The order which the OCR engine outputs
the codes for the connected components
does not necessarily correspond to the order
in which aksharas are composed. The OCR
engine basically works left to right and top
to bottom on the scanned image. Parts of
one akshara may get mixed up adjacent ak-
sharas.

• Line and word segmentation may not be in
error, there may be mis-recognitions as also
rejects.

Figure 7: Examples of OCR Output Code to
Character Mappings

The following figure illustrates some of these
problems:

We now present the overall strategy used in
the DRISHTI OCR system for Telugu. The
core engine is designed to output not only the
codes for the recognized components but also the
sizes and relative locations of the components.
The size and relative location and vertical stack-
ing information aid in the disambiguation and
proper re-combination of base and conjunct con-
sonants, punctuation marks, etc. Accordingly,
recognized components are classified into base
character, secondary consonant in a consonant
cluster, vowel maatra and punctuation. Identi-
fication of base characters has been found to be
very robust. There are only a few known excep-
tions, all of which can be disambiguated through
the corresponding the character level codes. As
a rule, aksharas start with a base character (full
vowel or a consonant) and this rule is used to

10



hypothesize syllable boundaries. Once syllable
boundaries are determined, the script grammar
is used to re-order the other components to build
valid aksharas. This overall strategy has been
found be working quite well.

9 Conclusions

We have described a script grammar which de-
fines a framework for the representation and pro-
cessing of Indian language documents at the lan-
guage, script and font levels. The case study of
an OCR system within this framework for Tel-
ugu instantiates the general proposition. This
abstraction helps to get a deeper understanding
of complex systems for document engineering.

References

[1] C. Bhagvati, T.Ravi, S.M.Kumar, and Atul
Negi. On developing high accuracy ocr sys-
tems for telugu and other indian scripts.
Proceedings Language Engineering Confer-
ence, Eds. (K.N. Murthy, BB Chaudhuri),
IEEE Computer Society Press(2003):pp 18–
23, 2002.

[2] G Bharadwaja Kumar and Kavi Narayana
Murthy. Script independent language iden-
tification in the indian context. In R M K
Sinha and V N Shukla, editors, Proceedings
of iSTRANS 2004 International Conference
- Vol 1, pages 74–81. Tata McGraw-Hill Pub-
lishing Company Ltd, 2004.

[3] Narayana Murthy Kavi. Issues
in standardization of character en-
coding schemes. Technical Report,
LERC/UoH/2002/1(Department of CIS,
University of Hyderabad), 2002.

[4] Narayana Murthy Kavi and Nandakumar
Hegde. Some issues relating to a common
script for indian languages. International
Conference on Indian Writing Systems and
Nagari Script, 6-7 February 1999(Delhi Uni-
versity, Delhi, India), 1999.

[5] Atul Negi, Chakravarthy Bhagvati, and
B. Krishna. An ocr system for telugu.
Proc. Sixth International Conf. Document
Analysis and Recognition. Seattle, USA,
IEEE Computer Society Press, Los Alami-
tos, CA(2001), 2001.

[6] Atul Negi, K. Nikhil Shankar, and Chan-
drakanth Chereddi. Localization, extrac-
tion and recognition of text in telugu doc-
ument images. Proc.Seventh International
Conf. Document Analysis and Recognition.
Edinburgh, Scotland, IEEE Computer Soci-
ety Press, Los Alamitos, CA(2003):pp 1193
– 1197, 2003.

[7] J.D. Tubbs. A note on binary template
matching. Pattern Recogition, 22(4):pp 359–
365, 1989.

[8] C. Vasanthalakshmi and C. Patvardhan. A
multi-font ocr system for printed telugu text.
Proceedings Language Engineering Confer-
ence, Eds. (K.N. Murthy, BB Chaudhuri),
IEEE Computer Society Press(2003):pp 7–
17, 2002.

[9] K. Y. Wong, R. G. Casey, and F. M. Wahl.
Document analysis system. IBM Journal
of Research and Development, 26(6):pp 647–
656, 1982.

11


